PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m344.
Published online 2008 January 16. doi:  10.1107/S1600536807061454
PMCID: PMC2960389

{μ-6,6′-Dimeth­oxy-2,2′-[propane-1,3-diyl­bis(nitrilo­methyl­idyne)]­diphenolato}­trinitratocopper(II)samarium(III) acetone solvate

Abstract

In the title complex, [CuSm(C19H20N2O4)(NO3)3]·CH3CO-CH3, the CuII atom is four-coordinated in a square-planar geometry by two O atoms and two N atoms of the deprotonated Schiff base. The SmIII atom is ten-coordinate, chelated by three nitrate groups and linked to the four O atoms of the deprotonated Schiff base.

Related literature

See Elmali & Elerman (2003 [triangle], 2004 [triangle]) for similar copper–lanthanum complexes of the same Schiff base.

An external file that holds a picture, illustration, etc.
Object name is e-64-0m344-scheme1.jpg

Experimental

Crystal data

  • [CuSm(C19H20N2O4)(NO3)3]·C3H6O
  • M r = 798.37
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m344-efi1.jpg
  • a = 9.384 (5) Å
  • b = 12.111 (5) Å
  • c = 13.529 (6) Å
  • α = 73.071 (18)°
  • β = 86.984 (19)°
  • γ = 72.346 (18)°
  • V = 1400.5 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.91 mm−1
  • T = 295 (2) K
  • 0.33 × 0.30 × 0.19 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.446, T max = 0.610 (expected range = 0.420–0.575)
  • 13938 measured reflections
  • 6381 independent reflections
  • 5692 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.062
  • S = 1.09
  • 6381 reflections
  • 392 parameters
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: RAPID-AUTO (Rigaku Corporation, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997b [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807061454/ng2393sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061454/ng2393Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 20572018 and 20672032), Heilongjiang Province (Nos. 1055HZ001, ZJG0504 and JC200605) and Heilongjiang University.

supplementary crystallographic information

Comment

As shown in Fig. 1, the octodentate Schiff base ligand links Cu and Sm atoms into a dinuclear complex through two phenolate O atoms, which is similar with the bonding reported for another copper-lanthanum complex of the same ligand (Elmali & Elerman, 2003, 2004). The SmIII centre in (I) is ten-coordinated by four oxygen atoms from the ligand and six oxygen atoms from three nitrate ions. The CuII center is four-coordinate by two nitrogen atoms and two oxygen atoms from the ligand. And one molecular acetone is dissociative in the complex.

Experimental

The title complex was obtained by the treatment of copper(II) acetate monohydrate with the Schiff base in methanol/acetone (4:1) at room temperature. Then the mixture was refluxed for 3 h after the addition of samarium (III) nitrate hexahydrate. The reaction mixture was cooled and filtered; diethyl ether was allowed to diffuse slowly into the solution of the filtrate. Single crystals were obtained after several days. Analysis calculated for C22H26CuN5O14Sm: C, 33.28; H, 3.12; Cu, 7.91; N, 8.88; Sm, 18.86; found: C, 33.10; H, 3.28; Cu, 7.96; N, 8.77; Sm, 18.83%.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methylene C), C—H = 0.98 Å (methine C), and with Uiso(H) = 1.2Ueq(C) or C—H = 0.96 Å (methly C) and with Uiso(H) = 1.5Ueq(C). In complex (I), the diaminopropane is disordered and was refined with a split model over two positions, and with an occupancy of 0.289 (11) for C8, C9, C10, and 0.711 (11) for C8', C9', C10'.

Figures

Fig. 1.
The molecular structure of (I), showing 40% probability displacement ellipsoids. All H atoms and actone molecule have been omitted for clarity.

Crystal data

[CuSm(C19H20N2O4)(NO3)3]·C3H6OZ = 2
Mr = 798.37F000 = 792
Triclinic, P1Dx = 1.893 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.384 (5) ÅCell parameters from 12555 reflections
b = 12.111 (5) Åθ = 6.3–55.0º
c = 13.529 (6) ŵ = 2.91 mm1
α = 73.071 (18)ºT = 295 (2) K
β = 86.984 (19)ºBlock, green
γ = 72.346 (18)º0.33 × 0.30 × 0.19 mm
V = 1400.5 (11) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer6381 independent reflections
Radiation source: fine-focus sealed tube5692 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 295(2) Kθmax = 27.7º
ω scanθmin = 3.2º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = −12→12
Tmin = 0.446, Tmax = 0.610k = −15→15
13938 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.062  w = 1/[σ2(Fo2) + (0.0234P)2 + 0.9589P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
6381 reflectionsΔρmax = 0.57 e Å3
392 parametersΔρmin = −0.41 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.5501 (3)0.7332 (2)0.4170 (2)0.0360 (6)
C20.6420 (3)0.7711 (2)0.3375 (2)0.0380 (6)
C30.7936 (3)0.7349 (3)0.3504 (3)0.0465 (7)
H10.85220.76220.29690.056*
C40.8598 (4)0.6566 (3)0.4449 (3)0.0537 (9)
H20.96340.63100.45460.064*
C50.7740 (4)0.6175 (3)0.5226 (3)0.0527 (8)
H30.81950.56480.58520.063*
C60.6162 (3)0.6554 (3)0.5105 (2)0.0422 (7)
C70.5318 (4)0.6060 (3)0.5936 (2)0.0490 (8)
H40.58790.54780.65040.059*
C80.3395 (5)0.5602 (4)0.6970 (3)0.0819 (14)
H50.34550.59530.75200.098*
H60.40670.47800.71620.098*
C90.1820 (5)0.5565 (3)0.6872 (3)0.0663 (11)
H70.17180.53280.62600.080*
H80.16270.49600.74680.080*
C100.0698 (4)0.6750 (3)0.6799 (2)0.0538 (8)
H9−0.02810.66360.69330.065*
H100.09370.70710.73260.065*
C11−0.0655 (3)0.8406 (3)0.5481 (2)0.0424 (7)
H11−0.14030.83590.59560.051*
C12−0.1089 (3)0.9324 (3)0.4522 (2)0.0384 (6)
C13−0.2583 (4)1.0074 (3)0.4383 (3)0.0497 (8)
H12−0.32210.99990.49320.060*
C14−0.3108 (4)1.0906 (3)0.3460 (3)0.0533 (8)
H13−0.40981.13940.33810.064*
C15−0.2161 (3)1.1026 (3)0.2633 (3)0.0470 (7)
H14−0.25191.15880.19980.056*
C16−0.0682 (3)1.0303 (2)0.2762 (2)0.0376 (6)
C17−0.0128 (3)0.9440 (2)0.3701 (2)0.0340 (6)
C18−0.0188 (4)1.1099 (3)0.0970 (3)0.0576 (9)
H15−0.08581.07720.07180.086*
H160.06401.11070.05230.086*
H17−0.07091.19090.09830.086*
C190.6504 (4)0.8849 (4)0.1599 (3)0.0568 (9)
H180.71680.92180.18020.085*
H190.58430.94270.10420.085*
H200.70780.81670.13760.085*
C200.1935 (7)0.3884 (5)−0.0090 (5)0.1100 (19)
H210.12010.4099−0.06360.165*
H220.15250.35810.05620.165*
H230.28050.3270−0.01970.165*
C210.2360 (6)0.4971 (4)−0.0088 (4)0.0800 (13)
C220.3365 (7)0.4818 (5)0.0816 (4)0.1022 (18)
H240.36320.55470.07220.153*
H250.42560.41540.08520.153*
H260.28440.46580.14470.153*
Cu20.24465 (4)0.75758 (3)0.49629 (3)0.03670 (8)
N10.3895 (3)0.6310 (2)0.60036 (19)0.0498 (7)
N20.0646 (3)0.7631 (2)0.57760 (18)0.0402 (5)
N30.3263 (3)1.1105 (2)0.2284 (2)0.0510 (7)
N40.3808 (3)0.8126 (3)0.0426 (2)0.0478 (6)
N50.1427 (3)0.6889 (3)0.2369 (2)0.0528 (7)
O10.4021 (2)0.77107 (19)0.39863 (15)0.0439 (5)
O20.5643 (2)0.84507 (19)0.24634 (16)0.0447 (5)
O30.1281 (2)0.87450 (18)0.37652 (15)0.0411 (5)
O40.0358 (2)1.03583 (18)0.20020 (16)0.0436 (5)
O50.3167 (3)1.0333 (2)0.31093 (18)0.0543 (6)
O60.3339 (4)1.2091 (2)0.2275 (2)0.0787 (9)
O70.3255 (3)1.0798 (2)0.14667 (18)0.0535 (6)
O80.3018 (3)0.9182 (2)0.04383 (17)0.0524 (5)
O90.4101 (3)0.7863 (3)−0.0366 (2)0.0736 (8)
O100.4267 (3)0.7385 (2)0.12933 (19)0.0545 (6)
O110.0985 (3)0.7954 (2)0.1774 (2)0.0568 (6)
O120.0852 (4)0.6118 (3)0.2345 (3)0.0822 (9)
O130.2480 (3)0.6667 (2)0.2982 (2)0.0590 (6)
O140.2011 (5)0.5883 (3)−0.0775 (3)0.1208 (15)
Sm10.286846 (16)0.877380 (13)0.233252 (11)0.03533 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0338 (14)0.0327 (13)0.0389 (14)−0.0044 (11)−0.0040 (11)−0.0115 (12)
C20.0372 (15)0.0340 (13)0.0426 (15)−0.0094 (11)−0.0013 (12)−0.0117 (12)
C30.0372 (16)0.0438 (16)0.063 (2)−0.0129 (13)0.0002 (14)−0.0205 (16)
C40.0359 (16)0.0490 (18)0.075 (2)−0.0042 (14)−0.0133 (16)−0.0223 (18)
C50.0488 (19)0.0469 (17)0.055 (2)0.0011 (14)−0.0207 (16)−0.0163 (16)
C60.0437 (16)0.0355 (14)0.0418 (16)−0.0010 (12)−0.0114 (13)−0.0120 (13)
C70.054 (2)0.0409 (15)0.0349 (15)0.0064 (14)−0.0118 (14)−0.0049 (13)
C80.084 (3)0.067 (2)0.045 (2)0.009 (2)0.012 (2)0.0240 (18)
C90.112 (4)0.0417 (17)0.0437 (19)−0.033 (2)0.014 (2)−0.0017 (15)
C100.060 (2)0.065 (2)0.0346 (16)−0.0272 (17)0.0042 (14)−0.0029 (15)
C110.0416 (16)0.0494 (16)0.0441 (16)−0.0206 (13)0.0115 (13)−0.0198 (14)
C120.0362 (15)0.0393 (14)0.0442 (16)−0.0129 (12)0.0015 (12)−0.0174 (13)
C130.0403 (17)0.0566 (19)0.059 (2)−0.0135 (14)0.0077 (15)−0.0286 (17)
C140.0332 (16)0.0585 (19)0.067 (2)−0.0022 (14)−0.0076 (15)−0.0275 (18)
C150.0414 (17)0.0416 (15)0.0527 (18)0.0004 (13)−0.0143 (14)−0.0164 (14)
C160.0365 (15)0.0346 (13)0.0420 (15)−0.0074 (11)−0.0021 (12)−0.0144 (12)
C170.0315 (13)0.0328 (13)0.0378 (14)−0.0079 (10)−0.0037 (11)−0.0115 (11)
C180.061 (2)0.0499 (18)0.0401 (17)0.0023 (16)−0.0113 (15)0.0023 (15)
C190.051 (2)0.070 (2)0.052 (2)−0.0303 (17)0.0147 (16)−0.0114 (18)
C200.117 (5)0.084 (3)0.109 (4)−0.019 (3)−0.038 (4)−0.003 (3)
C210.099 (4)0.056 (2)0.063 (3)−0.003 (2)0.019 (2)−0.010 (2)
C220.153 (6)0.071 (3)0.081 (3)−0.034 (3)0.015 (3)−0.022 (3)
Cu20.03880 (19)0.03451 (16)0.02912 (16)−0.00780 (14)−0.00024 (14)−0.00084 (14)
N10.0625 (18)0.0373 (13)0.0317 (13)−0.0001 (12)0.0018 (12)0.0014 (11)
N20.0490 (15)0.0431 (13)0.0323 (12)−0.0213 (11)0.0042 (11)−0.0092 (11)
N30.0517 (16)0.0426 (14)0.0546 (17)−0.0123 (12)−0.0041 (13)−0.0090 (13)
N40.0424 (15)0.0607 (17)0.0417 (15)−0.0184 (13)0.0044 (12)−0.0147 (13)
N50.0500 (17)0.0454 (15)0.0623 (18)−0.0177 (13)0.0185 (14)−0.0138 (14)
O10.0326 (10)0.0514 (12)0.0324 (10)−0.0059 (9)−0.0036 (8)0.0044 (9)
O20.0373 (11)0.0522 (12)0.0375 (11)−0.0141 (9)0.0013 (9)−0.0015 (9)
O30.0360 (11)0.0396 (10)0.0342 (10)−0.0018 (8)0.0006 (8)−0.0005 (9)
O40.0397 (11)0.0387 (10)0.0376 (11)−0.0001 (8)−0.0067 (9)0.0004 (9)
O50.0666 (16)0.0520 (13)0.0429 (12)−0.0183 (11)0.0025 (11)−0.0113 (11)
O60.105 (2)0.0482 (14)0.085 (2)−0.0268 (15)−0.0138 (18)−0.0155 (14)
O70.0694 (16)0.0457 (12)0.0414 (12)−0.0210 (11)0.0005 (11)−0.0025 (10)
O80.0641 (15)0.0494 (12)0.0365 (11)−0.0139 (11)0.0023 (10)−0.0052 (10)
O90.0754 (19)0.098 (2)0.0495 (15)−0.0150 (16)0.0049 (13)−0.0367 (16)
O100.0538 (14)0.0500 (13)0.0507 (14)−0.0041 (10)−0.0009 (11)−0.0126 (11)
O110.0489 (14)0.0500 (13)0.0649 (16)−0.0132 (10)−0.0024 (11)−0.0077 (12)
O120.085 (2)0.0648 (17)0.115 (3)−0.0453 (16)0.0311 (19)−0.0355 (18)
O130.0676 (17)0.0407 (12)0.0568 (15)−0.0125 (11)0.0042 (13)−0.0008 (11)
O140.180 (4)0.069 (2)0.076 (2)−0.009 (2)−0.003 (2)0.0073 (18)
Sm10.03475 (8)0.03416 (8)0.02833 (8)−0.00614 (5)−0.00093 (5)0.00000 (5)

Geometric parameters (Å, °)

C1—O11.335 (3)C18—H150.9600
C1—C61.381 (4)C18—H160.9600
C1—C21.402 (4)C18—H170.9600
C2—C31.360 (4)C19—O21.436 (4)
C2—O21.382 (4)C19—H180.9600
C3—C41.393 (5)C19—H190.9600
C3—H10.9300C19—H200.9600
C4—C51.353 (5)C20—C211.488 (7)
C4—H20.9300C20—H210.9600
C5—C61.414 (4)C20—H220.9600
C5—H30.9300C20—H230.9600
C6—C71.433 (5)C21—O141.186 (5)
C7—N11.281 (4)C21—C221.518 (7)
C7—H40.9300C22—H240.9600
C8—N11.481 (4)C22—H250.9600
C8—C91.506 (6)C22—H260.9600
C8—H50.9700Cu2—O31.933 (2)
C8—H60.9700Cu2—O11.942 (2)
C9—C101.479 (5)Cu2—N21.962 (3)
C9—H70.9700Cu2—N11.965 (3)
C9—H80.9700N3—O61.215 (4)
C10—N21.474 (4)N3—O51.249 (4)
C10—H90.9700N3—O71.265 (4)
C10—H100.9700N4—O91.201 (3)
C11—N21.291 (4)N4—O101.254 (3)
C11—C121.424 (4)N4—O81.274 (3)
C11—H110.9300N5—O121.221 (4)
C12—C171.395 (4)N5—O131.238 (4)
C12—C131.407 (4)N5—O111.261 (4)
C13—C141.359 (5)O1—Sm12.359 (2)
C13—H120.9300O2—Sm12.520 (2)
C14—C151.393 (5)O3—Sm12.380 (2)
C14—H130.9300O4—Sm12.510 (2)
C15—C161.386 (4)O5—Sm12.501 (2)
C15—H140.9300O7—Sm12.517 (2)
C16—O41.381 (4)O8—Sm12.469 (2)
C16—C171.394 (4)O10—Sm12.525 (2)
C17—O31.326 (3)O11—Sm12.515 (3)
C18—O41.443 (4)O13—Sm12.577 (3)
O1—C1—C6122.4 (3)H25—C22—H26109.5
O1—C1—C2118.8 (3)O3—Cu2—O179.81 (9)
C6—C1—C2118.7 (3)O3—Cu2—N291.27 (10)
C3—C2—O2124.3 (3)O1—Cu2—N2171.07 (9)
C3—C2—C1121.9 (3)O3—Cu2—N1169.89 (10)
O2—C2—C1113.8 (2)O1—Cu2—N190.75 (11)
C2—C3—C4119.1 (3)N2—Cu2—N198.18 (12)
C2—C3—H1120.4C7—N1—C8114.6 (3)
C4—C3—H1120.4C7—N1—Cu2124.2 (2)
C5—C4—C3120.2 (3)C8—N1—Cu2121.2 (2)
C5—C4—H2119.9C11—N2—C10114.6 (3)
C3—C4—H2119.9C11—N2—Cu2124.6 (2)
C4—C5—C6121.2 (3)C10—N2—Cu2120.8 (2)
C4—C5—H3119.4O6—N3—O5121.5 (3)
C6—C5—H3119.4O6—N3—O7122.7 (3)
C1—C6—C5118.8 (3)O5—N3—O7115.9 (3)
C1—C6—C7122.5 (3)O9—N4—O10122.3 (3)
C5—C6—C7118.6 (3)O9—N4—O8122.0 (3)
N1—C7—C6128.8 (3)O10—N4—O8115.7 (2)
N1—C7—H4115.6O12—N5—O13121.7 (3)
C6—C7—H4115.6O12—N5—O11122.0 (3)
N1—C8—C9112.9 (3)O13—N5—O11116.3 (3)
N1—C8—H5109.0C1—O1—Cu2128.75 (18)
C9—C8—H5109.0C1—O1—Sm1123.53 (18)
N1—C8—H6109.0Cu2—O1—Sm1107.68 (9)
C9—C8—H6109.0C2—O2—C19117.3 (2)
H5—C8—H6107.8C2—O2—Sm1118.50 (17)
C10—C9—C8112.1 (3)C19—O2—Sm1123.5 (2)
C10—C9—H7109.2C17—O3—Cu2129.08 (18)
C8—C9—H7109.2C17—O3—Sm1123.76 (17)
C10—C9—H8109.2Cu2—O3—Sm1107.15 (9)
C8—C9—H8109.2C16—O4—C18117.2 (2)
H7—C9—H8107.9C16—O4—Sm1118.80 (16)
N2—C10—C9112.3 (3)C18—O4—Sm1121.66 (19)
N2—C10—H9109.2N3—O5—Sm197.49 (18)
C9—C10—H9109.2N3—O7—Sm196.27 (18)
N2—C10—H10109.2N4—O8—Sm197.71 (17)
C9—C10—H10109.2N4—O10—Sm195.60 (17)
H9—C10—H10107.9N5—O11—Sm198.4 (2)
N2—C11—C12128.3 (3)N5—O13—Sm196.02 (18)
N2—C11—H11115.9O1—Sm1—O363.27 (8)
C12—C11—H11115.9O1—Sm1—O8148.32 (8)
C17—C12—C13119.5 (3)O3—Sm1—O8146.44 (8)
C17—C12—C11122.5 (3)O1—Sm1—O573.64 (8)
C13—C12—C11117.8 (3)O3—Sm1—O573.43 (8)
C14—C13—C12121.1 (3)O8—Sm1—O5117.84 (8)
C14—C13—H12119.5O1—Sm1—O4124.51 (7)
C12—C13—H12119.5O3—Sm1—O464.03 (7)
C13—C14—C15119.9 (3)O8—Sm1—O487.13 (8)
C13—C14—H13120.0O5—Sm1—O476.07 (8)
C15—C14—H13120.0O1—Sm1—O11115.72 (8)
C16—C15—C14119.6 (3)O3—Sm1—O1180.42 (8)
C16—C15—H14120.2O8—Sm1—O1173.58 (9)
C14—C15—H14120.2O5—Sm1—O11144.02 (8)
O4—C16—C15124.5 (3)O4—Sm1—O1170.38 (8)
O4—C16—C17114.3 (2)O1—Sm1—O7117.15 (8)
C15—C16—C17121.2 (3)O3—Sm1—O7114.49 (8)
O3—C17—C16118.4 (3)O8—Sm1—O767.60 (8)
O3—C17—C12123.0 (3)O5—Sm1—O750.26 (8)
C16—C17—C12118.6 (3)O4—Sm1—O771.58 (8)
O4—C18—H15109.5O11—Sm1—O7125.99 (8)
O4—C18—H16109.5O1—Sm1—O264.43 (7)
H15—C18—H16109.5O3—Sm1—O2123.87 (7)
O4—C18—H17109.5O8—Sm1—O289.45 (8)
H15—C18—H17109.5O5—Sm1—O273.80 (8)
H16—C18—H17109.5O4—Sm1—O2143.74 (7)
O2—C19—H18109.5O11—Sm1—O2142.17 (8)
O2—C19—H19109.5O7—Sm1—O273.77 (8)
H18—C19—H19109.5O1—Sm1—O10100.83 (8)
O2—C19—H20109.5O3—Sm1—O10139.45 (8)
H18—C19—H20109.5O8—Sm1—O1050.74 (8)
H19—C19—H20109.5O5—Sm1—O10141.10 (8)
C21—C20—H21109.5O4—Sm1—O10130.89 (7)
C21—C20—H22109.5O11—Sm1—O1073.75 (9)
H21—C20—H22109.5O7—Sm1—O10105.97 (8)
C21—C20—H23109.5O2—Sm1—O1069.44 (8)
H21—C20—H23109.5O1—Sm1—O1369.00 (8)
H22—C20—H23109.5O3—Sm1—O1371.58 (8)
O14—C21—C20122.5 (5)O8—Sm1—O13104.97 (8)
O14—C21—C22121.5 (5)O5—Sm1—O13137.17 (8)
C20—C21—C22115.9 (4)O4—Sm1—O13108.91 (9)
C21—C22—H24109.5O11—Sm1—O1349.23 (8)
C21—C22—H25109.5O7—Sm1—O13172.57 (8)
H24—C22—H25109.5O2—Sm1—O13106.84 (8)
C21—C22—H26109.5O10—Sm1—O1367.87 (9)
H24—C22—H26109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2393).

References

  • Elmali, A. & Elerman, Y. (2003). Z. Naturforsch. Teil B, 58, 639–643.
  • Elmali, A. & Elerman, Y. (2004). Z. Naturforsch. Teil B, 59, 535–540.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku Corporation (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1997b). SHELXTL Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography