PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m342–m343.
Published online 2008 January 11. doi:  10.1107/S1600536808000743
PMCID: PMC2960388

(Tetra­oxidoselenato-κO)tris­(thio­urea-κS)zinc(II)

Abstract

The title structure, [Zn(SeO4)(CH4N2S)3], is isomorphous with sulfatotris(thio­urea)zinc(II). In both structures, the Zn2+ cation is coordinated in a tetra­hedral geometry. The corresponding intra­molecular distances are quite similar except for the Se—O and S—O distances. Although the hydrogen-bonding patterns are similar, there are some differences; in the title structure all the H atoms are involved in the hydrogen-bond pattern, in contrast to the situation in sulfatotris(thio­urea)zinc(II). No reproducible anomalies were detected by differential scanning calorimetry in the range 93–463 K until decomposition started at the higher temperature.

Related literature

For related literature, see: Krupková et al. (2007 [triangle]); Alex & Phillip (2001 [triangle]); Becker & Coppens (1974 [triangle]); PerkinElmer (2001 [triangle]); Ramabadran et al. (1992 [triangle]); Ushasree et al. (1998 [triangle], 2000 [triangle]); Venkataramanan et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m342-scheme1.jpg

Experimental

Crystal data

  • [Zn(SeO4)(CH4N2S)3]
  • M r = 436.7
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m342-efi1.jpg
  • a = 11.2045 (2) Å
  • b = 7.8824 (1) Å
  • c = 15.7960 (2) Å
  • V = 1395.08 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.83 mm−1
  • T = 292 K
  • 0.35 × 0.25 × 0.1 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: Gaussian (Coppens & Hamilton, 1970 [triangle]) T min = 0.223, T max = 0.602
  • 23449 measured reflections
  • 3150 independent reflections
  • 3004 reflections with I > 3σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.050
  • S = 1.52
  • 3150 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.25 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1492 Friedel pairs
  • Flack parameter: −0.020 (6)

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1997 [triangle]); program(s) used to refine structure: (JANA2000; Petříček et al., 2000 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: JANA2000.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000743/bq2062sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000743/bq2062Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support under a CZ–US grant as part of the KONTAKT program (Czech Ministry of Education, Youth and Sports), No. 1P05ME 785, is gratefully acknowledged.

supplementary crystallographic information

Comment

Zinc [tris(thiourea)]sulfate, isomorphous to the title structure, is reported to be a perspective semiorganic non-linear optical material (Ushasree et al., 1998, 2000). It can substitute potassium dihydrogenphosphate in technical applications (Ramabadran et al., 1992; Alex & Phillip, 2001). It has also an exceptionally wide acceptance angle for second harmonic generation (Ramabadran et al., 1992). Its resistance against laser induced damage is good (Venkataramanan et al., 1995).

We have synthesized the title compound since it is expected that it might show similar interesting properties as its known isostructural counterpart (Krupková et al., 2007). As a part of our on-going study of the title compound we report here its structure determination. The investigation od dielectric and optical properties is in progress.

The common features and differences between the hydrogen-bond patterns in both isostructural compounds are shown in Tab. 1. This table shows that the stronger hydrogen bonds are common for both isostructural compounds.

Experimental

The title compound has been prepared in a similar way as zinc[tris(thiourea)] sulfate. The preparation was carried out in two steps according to following equations:

(1) [ZnCO3][Zn(OH)2] + 2H2SeO4 + 3H2O → 2ZnSeO4.6H2O + CO2

(2) 4ZnSeO4.6H2O + 3 CS(NH2)2→ Zn[CS(NH2)2]3}[SeO4]

5.0 g (0.222 M) of ZnCO3[Zn(OH)2] dissolved in 3.6 g (0.2 M) of distilled H2O reacted with 6.45 g (96%) H2SeO4 (0.0427 M) at room temperature. After the neutralization white suspension was obtained. The suspension into which had been poured 50 ml of distilled H2O was heated at 60°C for 30 minutes. The solution became clearer and its pH=4.

Then, at 50°C was added 10.14 g (0.1332 M) of thiourea. The solution became orange-coloured and under stirring it was kept at 50°C for another 10 minutes. An orange precipitate has developed to which another 100 ml of distilled water was added. The mixture was stirred for another 20 minutes and then cooled down to room temperature. After two days, transparent crystals of length of 0.5 mm appeared at the walls of the beaker while an orange precipitate covered its bottom. Next day the precipitate was filtered off, some orange-tinged crystals have been isolated as seeds that were introduced into the filtrate. After a week clear transparent crystals appeared of the size of 1 cm, of the similar HABITUS as zinc[tris(thiourea)] sulfate (Alex & Phillip, 2001).

Refinement

All the H atoms were discernible in the difference Fourier map and even could be refined. Nevertheless, their coordinates were constrained in riding motion formalism: The pertinent distances equalled to 0.89Å and Uiso(H)=1.2Ueq(N).

The calorimetric experiments were performed on PerkinElmer DSC 7 and Pyris Diamond differential scanning calorimeters using PYRIS Software (PerkinElmer, 2001), with m = 30 mg, a temperature interval of 93–466 K and scanning rate of 10 K/min. No reproducible DSC anomalies were detected until the symptoms of decomposition at 463 K.

Figures

Fig. 1.
View of the title molecule with anisotropic displacement parameters shown at the 30% probability level.

Crystal data

[Zn(SeO4)(CH4N2S)3]F000 = 864
Mr = 436.7Dx = 2.079 Mg m3
Orthorhombic, Pca21Mo Kα radiation λ = 0.71069 Å
Hall symbol: P 2c -2acCell parameters from 14388 reflections
a = 11.2045 (2) Åθ = 1.0–27.5º
b = 7.8824 (1) ŵ = 4.83 mm1
c = 15.7960 (2) ÅT = 292 K
V = 1395.08 (4) Å3Prism, colourless
Z = 40.35 × 0.25 × 0.1 mm

Data collection

Nonius KappaCCD diffractometer3150 independent reflections
Radiation source: fine-focus sealed tube3004 reflections with I > 3σ(I)
Monochromator: graphiteRint = 0.039
T = 292 Kθmax = 27.5º
ω scansθmin = 3.2º
Absorption correction: Gaussian(Coppens & Hamilton, 1970)h = −14→14
Tmin = 0.223, Tmax = 0.602k = −10→10
23449 measured reflectionsl = −19→20

Refinement

Refinement on F2Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0004I2]
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max = 0.005
wR(F2) = 0.050Δρmax = 0.36 e Å3
S = 1.52Δρmin = −0.25 e Å3
3150 reflectionsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
163 parametersExtinction coefficient: 1.65 (5)
48 constraintsAbsolute structure: Flack (1983), 1492 Friedel pairs
H-atom parameters constrainedFlack parameter: −0.020 (6)

Special details

Refinement. The Flack parameter converged to the value -0.020 (6), so it was excluded from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.43588 (3)0.34032 (3)0.42203 (2)0.02479 (9)
Se10.37373 (2)0.15124 (3)0.2477980.02293 (7)
O10.34191 (19)0.1846 (2)0.34926 (13)0.0363 (6)
O20.29853 (18)−0.0173 (2)0.22066 (12)0.0317 (6)
O30.51627 (17)0.1169 (2)0.23987 (16)0.0372 (6)
O40.33169 (19)0.3147 (2)0.19315 (15)0.0392 (6)
S10.57849 (6)0.49589 (8)0.34906 (5)0.03060 (19)
C10.5054 (2)0.6544 (2)0.29483 (16)0.0290 (8)
N10.5667 (2)0.7339 (3)0.23498 (16)0.0401 (8)
N20.3957 (2)0.7021 (3)0.31154 (18)0.0447 (9)
S20.52313 (7)0.17226 (9)0.52667 (5)0.0327 (2)
C20.64030 (18)0.0636 (3)0.48127 (17)0.0314 (8)
N30.6501 (2)0.0405 (4)0.39895 (16)0.0468 (9)
N40.7222 (2)0.0025 (3)0.53155 (17)0.0460 (9)
S30.29592 (6)0.50137 (8)0.49583 (5)0.03039 (18)
C30.3845 (2)0.5992 (3)0.57094 (15)0.0295 (7)
N50.3360 (3)0.6436 (3)0.64329 (16)0.0453 (9)
N60.4979 (2)0.6351 (3)0.55684 (18)0.0455 (9)
H1n10.639540.6983110.221230.0482*
H2n10.5349560.8228060.2085460.0482*
H1n20.3594820.777570.2784280.0536*
H2n20.357420.6588740.3559730.0536*
H1n30.590990.0718090.3646890.0562*
H2n30.71576−0.0064240.3776120.0562*
H1n40.7187080.0229950.586910.0552*
H2n40.781526−0.0595330.5104750.0552*
H1n50.3738390.7153110.6775030.0543*
H2n50.2651470.6018910.6581060.0543*
H1n60.5354570.5895010.5127180.0546*
H2n60.5367980.7050070.5914620.0546*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.02747 (16)0.02426 (15)0.02265 (16)0.00004 (11)0.00160 (12)−0.00106 (11)
Se10.02532 (13)0.02427 (12)0.01920 (13)−0.00028 (8)0.00161 (10)0.00140 (11)
O10.0414 (12)0.0444 (10)0.0231 (9)−0.0183 (9)0.0063 (9)−0.0069 (8)
O20.0396 (10)0.0290 (9)0.0264 (10)−0.0047 (7)−0.0031 (8)−0.0027 (6)
O30.0268 (9)0.0441 (10)0.0408 (12)0.0020 (8)0.0042 (10)0.0047 (10)
O40.0401 (11)0.0336 (9)0.0441 (12)0.0049 (8)0.0048 (10)0.0138 (9)
S10.0252 (3)0.0343 (3)0.0323 (3)0.0001 (2)0.0004 (3)0.0102 (3)
C10.0314 (15)0.0266 (12)0.0291 (14)−0.0051 (10)−0.0037 (11)0.0013 (10)
N10.0423 (14)0.0369 (12)0.0412 (15)0.0019 (10)0.0037 (11)0.0138 (11)
N20.0364 (14)0.0400 (13)0.0575 (18)0.0084 (12)0.0078 (13)0.0189 (12)
S20.0354 (4)0.0400 (4)0.0227 (3)0.0119 (3)0.0055 (3)0.0041 (2)
C20.0356 (14)0.0326 (13)0.0260 (14)0.0060 (11)0.0011 (11)0.0012 (10)
N30.0477 (16)0.0652 (17)0.0276 (13)0.0260 (14)0.0023 (11)−0.0063 (12)
N40.0435 (15)0.0629 (17)0.0315 (13)0.0267 (12)−0.0011 (11)0.0021 (12)
S30.0228 (3)0.0406 (3)0.0279 (3)0.0011 (2)−0.0020 (3)−0.0110 (3)
C30.0324 (13)0.0296 (12)0.0266 (14)0.0035 (10)−0.0047 (11)−0.0045 (11)
N50.0384 (15)0.0655 (17)0.0320 (14)−0.0047 (12)0.0003 (12)−0.0218 (12)
N60.0328 (14)0.0620 (17)0.0418 (16)−0.0102 (11)0.0010 (12)−0.0253 (12)

Geometric parameters (Å, °)

Zn1—O11.984 (2)C3—N51.313 (4)
Zn1—S12.3207 (8)C3—N61.321 (3)
Zn1—S22.3330 (8)N1—H1n10.89
Zn1—S32.3302 (7)N1—H2n10.89
Se1—O11.663 (2)N2—H1n20.89
Se1—O21.6307 (18)N2—H2n20.89
Se1—O31.6246 (19)N3—H1n30.89
Se1—O41.621 (2)N3—H2n30.89
S1—C11.722 (2)N4—H1n40.89
C1—N11.326 (3)N4—H2n40.89
C1—N21.313 (4)N5—H1n50.89
S2—C21.724 (2)N5—H2n50.89
C2—N31.317 (4)N6—H1n60.89
C2—N41.306 (3)N6—H2n60.89
S3—C31.729 (2)
Se1—Zn1—S188.22 (2)H1n1—N1—H2n1120.0
Se1—Zn1—S2115.80 (2)C1—N2—H1n2120.0
Se1—Zn1—S3122.45 (2)C1—N2—H2n2120.0
S1—Zn1—S2111.31 (3)H1n2—N2—H2n2120.0
S1—Zn1—S3115.09 (3)C2—N3—H1n3120.0
S2—Zn1—S3103.70 (3)C2—N3—H2n3120.0
O1—Se1—O2105.75 (10)H1n3—N3—H2n3120.0
O1—Se1—O3108.14 (11)C2—N4—H1n4120.0
O1—Se1—O4108.98 (11)C2—N4—H2n4120.0
O2—Se1—O3110.62 (10)H1n4—N4—H2n4120.0
O2—Se1—O4110.95 (10)C3—N5—H1n5120.0
O3—Se1—O4112.15 (11)C3—N5—H2n5120.0
S1—C1—N1116.84 (19)H1n5—N5—H2n5120.0
S1—C1—N2123.6 (2)C3—N6—H1n6120.0
N1—C1—N2119.5 (2)C3—N6—H2n6120.0
S2—C2—N3122.86 (19)H1n6—N6—H2n6120.0
S2—C2—N4117.7 (2)H1n1—N1—H2n1120.0
N3—C2—N4119.4 (2)H1n2—N2—H2n2120.0
S3—C3—N5118.6 (2)H1n3—N3—H2n3120.0
S3—C3—N6122.2 (2)H1n4—N4—H2n4120.0
N5—C3—N6119.2 (2)H1n5—N5—H2n5120.0
C1—N1—H1n1120.0H1n6—N6—H2n6120.0
C1—N1—H2n1120.0

Table 1 Tab. 1. Hydrogen-bond geometry (Å, °). */y indicates that the pertinent hydrogen bond is also present in Zn[(SC(NH2)2]3(SO4), Krupková et al. (2007).

D-H···AD-HH···AD···AD-H···A*
N1-H1N1···O4i0.892.203.066 (3)164y
N1-H2N1···O3ii0.892.383.072 (3)135y
N2-H1N2···O2ii0.891.982.852 (3)167y
N2-H2N2···S30.892.633.497 (3)166
N3-H1N3···O30.892.172.988 (3)152y
N3-H2N3···O1iii0.892.042.895 (3)160y
N4-H1N4···O2iV0.892.122.999 (3)168y
N4-H2N4···S2iii0.892.863.643 (3)148
N5-H1N5···O3V0.892.062.938 (3)170y
N5-H2N5···O4Vi0.892.573.297 (3)139
N6-H1N6···S10.892.733.577 (3)159
N6-H2N6···O4v0.892.192.905 (3)137y

Symmetry codes:(i) 1/2+x,-y+1, z; (ii) x, y+1, z; (iii) 1/2+x, -y, z; (iv) 1-x, -y, 1/2+z; (v) 1-x, 1-y, 1/2+z; (vi) 1/2-x, y, 1/2+z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2062).

References

  • Alex, A. V. & Phillip, J. (2001). J. Appl. Phys.90, 720–723.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1997). SIR97 University of Bari, Italy.
  • Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.
  • Coppens, P. & Hamilton, W. C. (1970). Acta Cryst. A26, 71–83.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hooft, R. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Krupková, R., Fábry, J., Císařová, I. & Vaněk, P. (2007). Acta Cryst. E63, m3177–m3178.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • PerkinElmer (2001). PYRIS Software. Version 4.02. PerkinElmer Instruments, Shelton, CT, USA.
  • Petříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000 Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.
  • Ramabadran, U. B., Zelmon, D. E. & Kennedy, G. C. (1992). Appl. Phys. Lett.60, 2589–2591.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Ushasree, P. M., Jayavel, R., Subramanian, C. & Ramasamy, P. (1998). Bull. Electrochem.14, 407–410.
  • Ushasree, P. M., Muralidharan, R., Jayavel, R. & Ramasamy, P. (2000). J. Cryst. Growth, 210, 741–745.
  • Venkataramanan, V., Subramanian, C. K. & Bhat, H. L. (1995). J. Appl. Phys.77, 6049–6051.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography