PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o377–o378.
Published online 2008 January 4. doi:  10.1107/S1600536807068638
PMCID: PMC2960385

(m-Phenyl­enedimethyl­ene)diammonium p-nitro­phenyl­phosphate perchlorate

Abstract

The title compound, C8H14N2 2+·C12H8N2O8P·ClO4 , was formed by the reaction of α,α-bis-m-xylenediamine and sodium bis-p-nitro­phenyl­phosphate in the presence of Zn(ClO4)·6H2O in methanol solution. The two amine groups of the m-xylenediammonium ion are each protonated and each hydrogen-bonded to two O atoms of the phosphate anion, which acts as a 1,3-bridge. The ammonium groups are arranged matched face to face and each pair is doubly bridged by two perchlorate ions through hydrogen bonding. In addition, there are also weak C—H(...)O inter­actions. Both the N—H(...)O and C—H(...)O inter­actions are contained in a channel down the a axis. The perchlorate oxygen atoms are disordered over two positions with site occupancy factors of ca 0.7 and 0.3.

Related literature

For related literature, see: Gultneh et al. (1996 [triangle], 1999 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-64-0o377-scheme1.jpg

Experimental

Crystal data

  • C8H14N2 2+·C12H8N2O8P·ClO4
  • M r = 576.84
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o377-efi1.jpg
  • a = 8.337 (2) Å
  • b = 11.623 (3) Å
  • c = 13.535 (3) Å
  • α = 91.22 (1)°
  • β = 94.32 (1)°
  • γ = 106.06 (1)°
  • V = 1255.6 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 293 (2) K
  • 0.35 × 0.29 × 0.17 mm

Data collection

  • Bruker P4S diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.876, T max = 0.941
  • 3673 measured reflections
  • 3388 independent reflections
  • 2390 reflections with I > 2σ(I)
  • R int = 0.026
  • θmax = 23.0°
  • 3 standard reflections every 97 reflections intensity decay: <2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.154
  • S = 1.02
  • 3388 reflections
  • 383 parameters
  • 92 restraints
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: XSCANS (Bruker, 1997 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Bruker, 2000 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068638/bq2059sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068638/bq2059Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the DoD for funds to upgrade the diffractometer.

supplementary crystallographic information

Comment

Base pairing association of biological molecules through hydrogen bonding is central in molecular recognition and attachment of substrates and drugs at specific sites on proteins and the pairing of nucleotides on DNA strands are important phenomena.

The title compound was formed by the reaction of α,α-bis-m-xylenediammine and sodium bis-p-nitrophenylphosphate in the presence of Zn(ClO4).6H2O in methanol solution in an effort to study the catalytic activity of the Zn(II) complex of m-xylenediamine. The two amine groups on a meta-xylenediamine molecule are each protonated and the two ammonium groups are hydrogen bonded to two O atoms of the phosphate anion which acts as a 1,3-bridge at Namine—O distances of 2.706 (5) Å and 2.755 (5) Å (Fig. 1.). In addition there are weaker intermolecular interactions with adjoining phosphate (2.842 (5) to 2.846 (6) Å) O atoms of adjoining anions. In the unit cell, the ammonium groups on two m-xylenediammonium cations are arranged matched face to face and each pair is doubly intermolecular bridged by two perchlorate ions through hydrogen bonding at Namine—Ophosphate distances ranging from 2.847 (5) Å to 3.183 (11) Å. The source of H+ for the protonation of the amine groups is likely to be the hydrolysis by the aquated Zn2+ consistent with the acidic behavior zinc-bound water molecules of the [Zn—OH2]2+ moiety especially with the assistance of the basic amine groups (Gultneh et al., 1996, Gultneh et al., 1999).

Experimental

The title compound was formed by the reaction of α,α-bis-m-xylenediammine and sodium bis-p-nitrophenylphosphate in the presence of Zn(ClO4).6H2O in a methanol solution. Crystals of the diammonium-phosphate salt crystallized out of the reaction mixture.

Refinement

The perchlorate O atoms was idealized over two conformations with occupancies of 0.726 (14) and 0.274 (14). The H atoms were idealized with an N—H distance of 0.89 and C—H distances of 0.93 (aromatic C—H), 0.96 (CH3), and 0.97 (CH2) Å and Uiso(H) = 1.2Ueq(C) (1.5Ueq(C) for the CH3 protons). The CH3 and NH3 protons were allowed to rotate about the C—C and C—N axes, respectively.

Figures

Fig. 1.
The title compound with numbering scheme used. Hydrogen bonding interactions shown as dotted lines. Ellipsoids are drawn at the 20% probability level.
Fig. 2.
The packing arrangement viewed down the b axis showing the N—H···O and C—H···O interactions (dashed bonds).

Crystal data

C8H14N22+·C12H8N2O8P·ClO4Z = 2
Mr = 576.84F000 = 596
Triclinic, P1Dx = 1.526 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.337 (2) ÅCell parameters from 55 reflections
b = 11.623 (3) Åθ = 2.5–21.5º
c = 13.535 (3) ŵ = 0.29 mm1
α = 91.22 (1)ºT = 293 (2) K
β = 94.32 (1)ºPrism, pale yellow
γ = 106.06 (1)º0.35 × 0.29 × 0.17 mm
V = 1255.6 (5) Å3

Data collection

Bruker P4S diffractometerRint = 0.026
Radiation source: fine-focus sealed tubeθmax = 23.0º
Monochromator: graphiteθmin = 2.3º
T = 293(2) Kh = 0→8
ω scansk = −12→12
Absorption correction: ψ scan(North et al., 1968)l = −14→14
Tmin = 0.876, Tmax = 0.9413 standard reflections
3673 measured reflections every 97 reflections
3388 independent reflections intensity decay: <2%
2390 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.154  w = 1/[σ2(Fo2) + (0.0642P)2 + 1.9482P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3388 reflectionsΔρmax = 0.40 e Å3
383 parametersΔρmin = −0.28 e Å3
92 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cl−0.5118 (2)0.19712 (12)0.45260 (11)0.0662 (5)
P0.06849 (17)0.26311 (10)0.63110 (8)0.0399 (4)
O1A−0.0552 (4)0.2737 (2)0.7132 (2)0.0449 (8)
O1B0.2361 (4)0.2578 (3)0.6952 (2)0.0488 (9)
O20.0121 (4)0.1467 (3)0.5758 (2)0.0463 (9)
O30.0908 (4)0.3765 (3)0.5791 (2)0.0513 (9)
O31A−0.2691 (6)−0.0535 (4)1.0666 (3)0.0811 (13)
O32A−0.4735 (6)−0.1328 (4)0.9593 (3)0.0762 (12)
O31B0.7414 (6)0.6944 (4)0.9310 (3)0.0884 (14)
O32B0.8000 (6)0.5482 (4)1.0050 (3)0.0906 (15)
O11A−0.4392 (10)0.1435 (9)0.3755 (6)0.116 (3)0.726 (14)
O12A−0.4323 (16)0.1876 (9)0.5441 (6)0.128 (3)0.726 (14)
O13A−0.4991 (12)0.3164 (6)0.4320 (8)0.099 (3)0.726 (14)
O14A−0.6843 (9)0.1299 (7)0.4453 (7)0.088 (2)0.726 (14)
O11B−0.358 (2)0.201 (2)0.5091 (19)0.113 (6)0.274 (14)
O12B−0.480 (3)0.206 (3)0.3531 (11)0.137 (6)0.274 (14)
O13B−0.647 (3)0.1098 (18)0.4744 (19)0.103 (6)0.274 (14)
O14B−0.542 (2)0.3121 (14)0.4838 (17)0.076 (5)0.274 (14)
N3A−0.3393 (7)−0.0609 (4)0.9838 (3)0.0567 (12)
N3B0.7181 (6)0.5890 (5)0.9438 (3)0.0639 (13)
N1D0.1990 (6)0.5391 (4)0.4413 (3)0.0585 (12)
H1DA0.28530.59610.47030.088*
H1DB0.17320.47730.48060.088*
H1DC0.11120.56800.43080.088*
N3D−0.1619 (6)0.0440 (3)0.4001 (3)0.0560 (12)
H3DA−0.1761−0.03250.41420.084*
H3DB−0.26120.05890.39320.084*
H3DC−0.09820.09090.44910.084*
C1A−0.1208 (6)0.1835 (4)0.7777 (3)0.0402 (12)
C2A−0.0489 (7)0.1960 (4)0.8735 (3)0.0542 (14)
H2AA0.04590.25880.89250.065*
C3A−0.1197 (7)0.1140 (5)0.9407 (3)0.0565 (15)
H3AA−0.07340.12061.00600.068*
C4A−0.2586 (6)0.0227 (4)0.9105 (3)0.0444 (12)
C5A−0.3275 (7)0.0084 (5)0.8141 (4)0.0555 (14)
H5AA−0.4199−0.05590.79460.067*
C6A−0.2572 (7)0.0915 (4)0.7463 (3)0.0526 (14)
H6AA−0.30230.08440.68080.063*
C1B0.3478 (6)0.3450 (4)0.7569 (3)0.0420 (12)
C2B0.4513 (7)0.3036 (5)0.8225 (4)0.0570 (15)
H2BA0.43940.22180.82490.068*
C3B0.5722 (7)0.3825 (5)0.8845 (4)0.0601 (15)
H3BA0.64280.35500.92870.072*
C4B0.5863 (6)0.5025 (5)0.8797 (3)0.0508 (13)
C5B0.4850 (7)0.5455 (5)0.8148 (4)0.0555 (14)
H5BA0.49850.62750.81220.067*
C6B0.3629 (7)0.4661 (4)0.7533 (4)0.0523 (13)
H6BA0.29150.49390.70990.063*
C1D0.1025 (6)0.4028 (4)0.2941 (3)0.0462 (13)
C2D0.0742 (7)0.2853 (4)0.3231 (3)0.0480 (13)
H2DA0.14250.26780.37480.058*
C3D−0.0540 (6)0.1944 (4)0.2763 (3)0.0452 (12)
C4D−0.1541 (7)0.2212 (4)0.1995 (3)0.0513 (13)
H4DA−0.24110.16070.16750.062*
C5D−0.1255 (7)0.3376 (5)0.1700 (4)0.0585 (15)
H5DA−0.19310.35520.11800.070*
C6D0.0016 (7)0.4268 (4)0.2168 (4)0.0523 (14)
H6DA0.02020.50490.19610.063*
C110.2443 (7)0.4993 (5)0.3462 (4)0.0593 (15)
H11A0.34130.46920.35790.071*
H11B0.27440.56720.30410.071*
C31−0.0792 (7)0.0681 (4)0.3064 (4)0.0561 (15)
H31A−0.14700.01420.25390.067*
H31B0.02860.05150.31450.067*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0684 (12)0.0577 (9)0.0649 (9)0.0092 (8)−0.0107 (8)0.0023 (7)
P0.0529 (9)0.0357 (7)0.0278 (6)0.0075 (6)0.0011 (6)0.0040 (5)
O1A0.060 (2)0.0365 (17)0.0373 (17)0.0105 (16)0.0115 (16)0.0053 (14)
O1B0.049 (2)0.0420 (18)0.0501 (19)0.0059 (16)−0.0065 (16)0.0006 (15)
O20.061 (2)0.0393 (18)0.0357 (17)0.0107 (16)0.0000 (16)−0.0021 (14)
O30.072 (3)0.0381 (18)0.0417 (18)0.0107 (17)0.0052 (17)0.0120 (14)
O31A0.112 (4)0.079 (3)0.043 (2)0.011 (2)0.006 (2)0.021 (2)
O32A0.067 (3)0.071 (3)0.081 (3)0.000 (2)0.012 (2)0.027 (2)
O31B0.090 (4)0.068 (3)0.094 (3)0.007 (3)−0.013 (3)−0.028 (2)
O32B0.093 (4)0.097 (3)0.062 (3)0.002 (3)−0.026 (3)−0.001 (2)
O11A0.109 (5)0.151 (6)0.107 (5)0.067 (4)0.022 (4)−0.012 (4)
O12A0.153 (7)0.141 (5)0.087 (5)0.051 (5)−0.046 (5)0.012 (4)
O13A0.100 (5)0.063 (4)0.119 (6)0.007 (3)−0.017 (5)0.021 (4)
O14A0.065 (4)0.077 (4)0.113 (5)0.003 (3)0.004 (4)0.030 (3)
O11B0.111 (9)0.123 (8)0.112 (9)0.052 (7)−0.023 (7)0.003 (7)
O12B0.139 (8)0.159 (9)0.114 (8)0.039 (7)0.031 (7)−0.001 (7)
O13B0.087 (8)0.091 (8)0.118 (9)0.002 (6)0.016 (7)0.033 (7)
O14B0.078 (7)0.059 (6)0.090 (8)0.019 (6)0.002 (7)−0.004 (6)
N3A0.071 (4)0.048 (3)0.052 (3)0.015 (3)0.013 (3)0.011 (2)
N3B0.056 (3)0.076 (4)0.050 (3)0.004 (3)0.002 (2)−0.011 (3)
N1D0.062 (3)0.048 (2)0.055 (3)−0.003 (2)0.008 (2)0.006 (2)
N3D0.077 (3)0.040 (2)0.043 (2)0.007 (2)−0.010 (2)0.0052 (18)
C1A0.050 (3)0.036 (3)0.033 (2)0.008 (2)0.009 (2)0.002 (2)
C2A0.059 (4)0.054 (3)0.037 (3)−0.004 (3)−0.002 (3)−0.004 (2)
C3A0.067 (4)0.064 (3)0.031 (3)0.005 (3)−0.002 (3)0.007 (2)
C4A0.051 (3)0.046 (3)0.035 (3)0.011 (3)0.006 (2)0.007 (2)
C5A0.055 (4)0.053 (3)0.045 (3)−0.005 (3)−0.002 (3)0.001 (2)
C6A0.057 (4)0.056 (3)0.034 (3)−0.001 (3)−0.003 (2)0.003 (2)
C1B0.042 (3)0.047 (3)0.032 (2)0.002 (2)0.007 (2)0.005 (2)
C2B0.061 (4)0.052 (3)0.050 (3)0.002 (3)0.000 (3)0.017 (3)
C3B0.060 (4)0.071 (4)0.042 (3)0.008 (3)−0.006 (3)0.016 (3)
C4B0.044 (3)0.064 (4)0.035 (3)0.001 (3)0.002 (2)−0.004 (2)
C5B0.057 (4)0.050 (3)0.054 (3)0.007 (3)0.003 (3)−0.010 (3)
C6B0.048 (4)0.052 (3)0.055 (3)0.013 (3)−0.001 (3)−0.003 (2)
C1D0.052 (4)0.042 (3)0.040 (3)0.004 (2)0.008 (2)0.003 (2)
C2D0.061 (4)0.049 (3)0.036 (3)0.021 (3)0.000 (2)0.006 (2)
C3D0.056 (4)0.044 (3)0.038 (3)0.017 (3)0.006 (2)0.000 (2)
C4D0.057 (4)0.051 (3)0.042 (3)0.011 (3)−0.004 (3)−0.004 (2)
C5D0.069 (4)0.059 (3)0.050 (3)0.026 (3)−0.010 (3)0.005 (3)
C6D0.069 (4)0.044 (3)0.047 (3)0.018 (3)0.012 (3)0.011 (2)
C110.065 (4)0.055 (3)0.053 (3)0.005 (3)0.014 (3)0.007 (3)
C310.081 (4)0.040 (3)0.045 (3)0.013 (3)0.005 (3)−0.001 (2)

Geometric parameters (Å, °)

Cl—O13B1.347 (14)C3A—C4A1.366 (7)
Cl—O12A1.381 (6)C3A—H3AA0.9300
Cl—O12B1.392 (14)C4A—C5A1.373 (6)
Cl—O13A1.397 (6)C5A—C6A1.387 (7)
Cl—O14A1.429 (7)C5A—H5AA0.9300
Cl—O11B1.430 (14)C6A—H6AA0.9300
Cl—O11A1.456 (7)C1B—C2B1.377 (7)
Cl—O14B1.486 (13)C1B—C6B1.381 (7)
P—O21.471 (3)C2B—C3B1.375 (7)
P—O31.480 (3)C2B—H2BA0.9300
P—O1A1.597 (3)C3B—C4B1.370 (7)
P—O1B1.605 (3)C3B—H3BA0.9300
O1A—C1A1.398 (5)C4B—C5B1.370 (7)
O1B—C1B1.385 (5)C5B—C6B1.378 (7)
O31A—N3A1.214 (5)C5B—H5BA0.9300
O32A—N3A1.215 (5)C6B—H6BA0.9300
O31B—N3B1.204 (6)C1D—C6D1.374 (7)
O32B—N3B1.220 (6)C1D—C2D1.391 (6)
N3A—C4A1.469 (6)C1D—C111.504 (7)
N3B—C4B1.476 (6)C2D—C3D1.380 (7)
N1D—C111.469 (6)C2D—H2DA0.9300
N1D—H1DA0.8900C3D—C4D1.379 (7)
N1D—H1DB0.8900C3D—C311.494 (6)
N1D—H1DC0.8900C4D—C5D1.380 (7)
N3D—C311.484 (6)C4D—H4DA0.9300
N3D—H3DA0.8900C5D—C6D1.365 (7)
N3D—H3DB0.8900C5D—H5DA0.9300
N3D—H3DC0.8900C6D—H6DA0.9300
C1A—C6A1.361 (6)C11—H11A0.9700
C1A—C2A1.374 (6)C11—H11B0.9700
C2A—C3A1.375 (7)C31—H31A0.9700
C2A—H2AA0.9300C31—H31B0.9700
O13B—Cl—O12A89.9 (11)C2A—C3A—H3AA120.3
O13B—Cl—O12B116.6 (13)C3A—C4A—C5A121.8 (4)
O12A—Cl—O12B140.3 (11)C3A—C4A—N3A119.1 (4)
O13B—Cl—O13A129.2 (12)C5A—C4A—N3A119.0 (5)
O12A—Cl—O13A111.7 (6)C4A—C5A—C6A119.0 (5)
O12B—Cl—O13A75.2 (11)C4A—C5A—H5AA120.5
O12A—Cl—O14A111.7 (5)C6A—C5A—H5AA120.5
O12B—Cl—O14A101.4 (11)C1A—C6A—C5A118.7 (4)
O13A—Cl—O14A109.4 (5)C1A—C6A—H6AA120.7
O13B—Cl—O11B115.6 (12)C5A—C6A—H6AA120.7
O12B—Cl—O11B108.0 (11)C2B—C1B—C6B120.5 (5)
O13A—Cl—O11B104.9 (11)C2B—C1B—O1B115.2 (4)
O14A—Cl—O11B139.3 (11)C6B—C1B—O1B124.3 (4)
O13B—Cl—O11A104.8 (12)C3B—C2B—C1B120.4 (5)
O12A—Cl—O11A109.8 (5)C3B—C2B—H2BA119.8
O13A—Cl—O11A109.4 (5)C1B—C2B—H2BA119.8
O14A—Cl—O11A104.6 (5)C4B—C3B—C2B118.5 (5)
O11B—Cl—O11A83.4 (10)C4B—C3B—H3BA120.8
O13B—Cl—O14B106.2 (12)C2B—C3B—H3BA120.8
O12A—Cl—O14B92.2 (9)C5B—C4B—C3B122.0 (5)
O12B—Cl—O14B106.5 (11)C5B—C4B—N3B118.6 (5)
O14A—Cl—O14B95.1 (9)C3B—C4B—N3B119.4 (5)
O11B—Cl—O14B102.6 (10)C4B—C5B—C6B119.4 (5)
O11A—Cl—O14B141.7 (8)C4B—C5B—H5BA120.3
O2—P—O3120.85 (18)C6B—C5B—H5BA120.3
O2—P—O1A111.69 (18)C5B—C6B—C1B119.2 (5)
O3—P—O1A103.26 (18)C5B—C6B—H6BA120.4
O2—P—O1B104.05 (18)C1B—C6B—H6BA120.4
O3—P—O1B112.33 (19)C6D—C1D—C2D118.8 (5)
O1A—P—O1B103.54 (17)C6D—C1D—C11121.9 (4)
C1A—O1A—P124.4 (3)C2D—C1D—C11119.3 (5)
C1B—O1B—P129.7 (3)C3D—C2D—C1D120.9 (4)
O31A—N3A—O32A123.2 (5)C3D—C2D—H2DA119.6
O31A—N3A—C4A118.1 (5)C1D—C2D—H2DA119.6
O32A—N3A—C4A118.7 (4)C4D—C3D—C2D119.2 (4)
O31B—N3B—O32B124.1 (5)C4D—C3D—C31120.7 (5)
O31B—N3B—C4B118.6 (5)C2D—C3D—C31120.1 (4)
O32B—N3B—C4B117.2 (5)C3D—C4D—C5D120.1 (5)
C11—N1D—H1DA109.5C3D—C4D—H4DA120.0
C11—N1D—H1DB109.5C5D—C4D—H4DA119.9
H1DA—N1D—H1DB109.5C6D—C5D—C4D120.3 (5)
C11—N1D—H1DC109.5C6D—C5D—H5DA119.9
H1DA—N1D—H1DC109.5C4D—C5D—H5DA119.9
H1DB—N1D—H1DC109.5C5D—C6D—C1D120.8 (5)
C31—N3D—H3DA109.5C5D—C6D—H6DA119.6
C31—N3D—H3DB109.5C1D—C6D—H6DA119.6
H3DA—N3D—H3DB109.5N1D—C11—C1D111.7 (4)
C31—N3D—H3DC109.5N1D—C11—H11A109.3
H3DA—N3D—H3DC109.5C1D—C11—H11A109.3
H3DB—N3D—H3DC109.5N1D—C11—H11B109.3
C6A—C1A—C2A122.4 (4)C1D—C11—H11B109.3
C6A—C1A—O1A119.9 (4)H11A—C11—H11B108.0
C2A—C1A—O1A117.5 (4)N3D—C31—C3D112.9 (4)
C1A—C2A—C3A118.7 (5)N3D—C31—H31A109.0
C1A—C2A—H2AA120.6C3D—C31—H31A109.0
C3A—C2A—H2AA120.6N3D—C31—H31B109.0
C4A—C3A—C2A119.3 (4)C3D—C31—H31B109.0
C4A—C3A—H3AA120.3H31A—C31—H31B107.8
O2—P—O1A—C1A44.8 (4)C1B—C2B—C3B—C4B0.3 (8)
O3—P—O1A—C1A176.1 (3)C2B—C3B—C4B—C5B−0.6 (8)
O1B—P—O1A—C1A−66.6 (4)C2B—C3B—C4B—N3B−178.4 (5)
O2—P—O1B—C1B175.9 (4)O31B—N3B—C4B—C5B−6.2 (7)
O3—P—O1B—C1B43.5 (4)O32B—N3B—C4B—C5B175.8 (5)
O1A—P—O1B—C1B−67.2 (4)O31B—N3B—C4B—C3B171.7 (5)
P—O1A—C1A—C6A−81.8 (5)O32B—N3B—C4B—C3B−6.3 (7)
P—O1A—C1A—C2A101.9 (5)C3B—C4B—C5B—C6B1.1 (8)
C6A—C1A—C2A—C3A−1.5 (8)N3B—C4B—C5B—C6B179.0 (5)
O1A—C1A—C2A—C3A174.7 (5)C4B—C5B—C6B—C1B−1.5 (8)
C1A—C2A—C3A—C4A0.1 (8)C2B—C1B—C6B—C5B1.3 (8)
C2A—C3A—C4A—C5A1.8 (9)O1B—C1B—C6B—C5B−176.5 (4)
C2A—C3A—C4A—N3A−176.7 (5)C6D—C1D—C2D—C3D−0.8 (7)
O31A—N3A—C4A—C3A−7.7 (7)C11—C1D—C2D—C3D−179.5 (5)
O32A—N3A—C4A—C3A171.3 (5)C1D—C2D—C3D—C4D0.3 (7)
O31A—N3A—C4A—C5A173.8 (5)C1D—C2D—C3D—C31178.1 (5)
O32A—N3A—C4A—C5A−7.1 (7)C2D—C3D—C4D—C5D0.2 (8)
C3A—C4A—C5A—C6A−2.2 (8)C31—C3D—C4D—C5D−177.6 (5)
N3A—C4A—C5A—C6A176.2 (5)C3D—C4D—C5D—C6D−0.2 (8)
C2A—C1A—C6A—C5A1.1 (8)C4D—C5D—C6D—C1D−0.4 (8)
O1A—C1A—C6A—C5A−175.0 (5)C2D—C1D—C6D—C5D0.8 (8)
C4A—C5A—C6A—C1A0.8 (8)C11—C1D—C6D—C5D179.5 (5)
P—O1B—C1B—C2B162.3 (4)C6D—C1D—C11—N1D101.4 (5)
P—O1B—C1B—C6B−19.9 (7)C2D—C1D—C11—N1D−80.0 (6)
C6B—C1B—C2B—C3B−0.7 (8)C4D—C3D—C31—N3D−105.0 (5)
O1B—C1B—C2B—C3B177.2 (5)C2D—C3D—C31—N3D77.3 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1D—H1DA···O13Ai0.892.132.987 (9)161
N1D—H1DA···O14Bi0.892.152.99 (2)158
N1D—H1DA···O11Bi0.892.282.99 (2)137
N1D—H1DA···O12Ai0.892.493.227 (11)140
N1D—H1DB···O30.891.842.706 (5)164
N1D—H1DC···O3i0.891.962.846 (6)174
N3D—H3DA···O2ii0.892.152.842 (5)134
N3D—H3DA···O13Biii0.892.222.753 (17)118
N3D—H3DA···O14Aiii0.892.443.042 (9)125
N3D—H3DB···O11A0.892.002.859 (10)163
N3D—H3DB···O11B0.892.583.17 (2)125
N3D—H3DC···O20.891.902.755 (5)162
C2A—H2AA···O32Biv0.932.573.422 (6)152
C5A—H5AA···O11Aiii0.932.563.262 (9)133

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) −x−1, −y, −z+1; (iv) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2059).

References

  • Bruker (1997). XSCANS Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2000). SHELXTL Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gultneh, Y., Allwar, A. B., Blaise, D., Butcher, R. J., Jasinski, J. M. & Jasinski, J. P. (1996). Inorg. Chim. Acta, 241, 31–38.
  • Gultneh, Y., Khan, A. R., Blaise, D., Chaudhry, S. B., Ahvazi, B., Marvey, B. B. & Butcher, R. J. (1999). J. Inorg. Biochem.75, 7–18.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography