PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m362.
Published online 2008 January 16. doi:  10.1107/S1600536808000962
PMCID: PMC2960381

Bis{μ-2-[(2-oxidobenzyl­idene)amino­meth­yl]phenolato-κ3 O,N,O′}bis­[(pyridine-κN)zinc(II)]

Abstract

In the title centrosymmetric zinc(II) complex, [Zn2(C4H13NO2)2(C6H5N)2], each ZnII atom is coordinated by two 2-[(2-oxidobenzyl­idene)amino­meth­yl]phenolate (L) ligands and one pyridine (py) mol­ecule in a distorted trigonal-bipyramidal geometry. Each L ligand behaves as a tridentate ligand and provides a phenolate oxygen bridge which links the two ZnII atoms. The ZnL(py) units are linked by π–π inter­actions between adjacent pyridine mol­ecules, with a centroid–centroid distance of 3.724 Å, resulting in a two-dimensional structure.

Related literature

For the biochemical and catalytic activity of zinc(II) complexes, see: Marco et al. (2004 [triangle]); Kim et al. (2000 [triangle]). ZnII ions in phenoxide-bridged dinuclear complexes provide flexible coordination numbers, see: Atakol et al. (1999 [triangle]); Huang et al. (2006 [triangle]). For the preparation of H2 L, see: Moustafa (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m362-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C14H13NO2)2(C5H5N)2]
  • M r = 739.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m362-efi1.jpg
  • a = 10.145 (6) Å
  • b = 13.806 (8) Å
  • c = 12.671 (8) Å
  • β = 102.063 (10)°
  • V = 1735.5 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.43 mm−1
  • T = 294 (2) K
  • 0.20 × 0.18 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.693, T max = 1.000 (expected range = 0.584–0.843)
  • 9656 measured reflections
  • 3561 independent reflections
  • 2440 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.084
  • S = 1.00
  • 3561 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: SMART-NT (Bruker, 1998 [triangle]); cell refinement: SAINT-NT (Bruker, 1998 [triangle]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-NT (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL-NT.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808000962/at2532sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000962/at2532Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 20601014 and 20631030)

supplementary crystallographic information

Comment

The schiff base ligand, N, N' -bis-salicylidene-1,3-diaminopropane give a phenoxide-bridged homodinuclear complex with ZnCl2. In the crystal structure, one ZnII center has a distorted square pyramid geometry, the other one has a distorted tetrahedral geometry (Atakol et al., 1999). In the tetra-imine macrocyclic cavity of dinuclear zinc(II) complexes, both of the two ZnII ions take a distorted square pyramid geometry with an apical position occupied by a water molecule (Huang et al., 2006).

The title complex [Zn2(py)2(L)2], (I), is the first dinuclear zinc(II) complex containing 2-hydroxybenzylamine-2'-hydroxybenzylidene(H2L) and pyridine(py). In (I), there are two phenoxide bridges between two ZnII atoms (Fig. 1). As can be seen from Table 1, in this complex the Zn—N(pyridine type) distance (2.129 Å) is similar to the average value of the reported structures, which is 2.132Å (Marco et al., 2004). The Zn—O bond lengths of 2.155(Zn1—O1A), 1.988(Zn1—O2A) and 1.9814 (Zn1—O1)Å in the title complex are comparable to those found in previously reported cadmium and zinc phenoxide complexes (1.864–2.170 Å) (Kim et al., 2000). The bond lengths and angles show that the five coordinations around ZnII atoms are not ideal square pyramid or trigonal bipyramid. The evalution between the two geometrics can be quantified using the τ parameter (Atakol et al., 1999), the τ value is calculated as 0.81, indicating a distorted trigonal bipyramid geometry. The Zn—O—Zn—O ring is planar (360°). Caculation indicates that Zn···Zn distance is 3.3 Å. The packing diagram of complex (I) is shown in Fig.2. The distance between adjacent pyridines is 3.724 Å. The [Zn2(py)2(L)2] units are thus linked by π···π interaction between pyridine molecules, resulting in the formation of a two-dimensional structure.

Experimental

The schiff base ligand H2L was prepared by a published procedure (Moustafa, 2003). H2L(0.1135 g, 0.5 mmol) was dissolved in methanol (20 ml). After a hot solution of zinc(II) acetate dihydrate (0.1097 g, 0.5 mmol) in water (10 ml) was added dropwise to the solution with continuous stirring, yellow precipitation came into being. When py (5 ml) was added to the turbid solution, the yellow precipitation was dissolved quickly and completely. After stirring further for 1 h with heating, the resulting solution was cooled and filtered. After about 1 week, single crystals of (I), suitable for X-ray structure determination, were obtained by slow evaporation of the solution at room temperature. Analysis calculated for C38H32N4O4Zn2: C 61.73, N 7.58, H 4.36%. Found: C 62.39, N 7.59, H 4.30%.

Refinement

All H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for methylene and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
Fig. 2.
A view of the crystal packing along the b axis.

Crystal data

[Zn2(C14H13NO2)2(C5H5N)2]F000 = 760
Mr = 739.42Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2807 reflections
a = 10.145 (6) Åθ = 2.5–24.3º
b = 13.806 (8) ŵ = 1.43 mm1
c = 12.671 (8) ÅT = 294 (2) K
β = 102.063 (10)ºBlock, yellow
V = 1735.5 (18) Å30.20 × 0.18 × 0.12 mm
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer3561 independent reflections
Radiation source: fine-focus sealed tube2440 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.056
T = 294(2) Kθmax = 26.5º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.693, Tmax = 1.000k = −17→14
9656 measured reflectionsl = −15→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.084  w = 1/[σ2(Fo2) + (0.0341P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3561 reflectionsΔρmax = 0.40 e Å3
217 parametersΔρmin = −0.32 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.60866 (3)1.08479 (2)0.49115 (2)0.03166 (11)
O10.46079 (18)1.05680 (13)0.56701 (14)0.0360 (5)
O20.3413 (2)0.78111 (13)0.45886 (14)0.0444 (5)
N10.4099 (2)0.87742 (16)0.66733 (16)0.0326 (5)
N20.7965 (2)1.02458 (17)0.57069 (17)0.0356 (6)
C10.4150 (3)1.09767 (19)0.6492 (2)0.0330 (6)
C20.3621 (3)1.1911 (2)0.6419 (2)0.0422 (7)
H20.36111.22780.58020.051*
C30.3106 (3)1.2300 (2)0.7263 (3)0.0531 (9)
H30.27401.29200.72010.064*
C40.3136 (3)1.1771 (2)0.8189 (3)0.0550 (9)
H40.27991.20350.87540.066*
C50.3670 (3)1.0849 (2)0.8273 (2)0.0492 (8)
H50.36951.04970.89030.059*
C60.4171 (3)1.0433 (2)0.7438 (2)0.0351 (7)
C70.4791 (3)0.9441 (2)0.7531 (2)0.0429 (7)
H7A0.57320.94940.74890.051*
H7B0.47530.91700.82300.051*
C80.3665 (3)0.7963 (2)0.6971 (2)0.0351 (7)
H80.37920.78590.77100.042*
C90.3000 (3)0.7197 (2)0.6279 (2)0.0340 (6)
C100.2446 (3)0.6435 (2)0.6794 (2)0.0503 (8)
H100.25110.64650.75360.060*
C110.1821 (4)0.5660 (2)0.6240 (3)0.0643 (10)
H110.14600.51700.65970.077*
C120.1733 (4)0.5613 (2)0.5133 (3)0.0640 (10)
H120.13080.50870.47450.077*
C130.2264 (3)0.6333 (2)0.4608 (2)0.0552 (9)
H130.21910.62810.38660.066*
C140.2920 (3)0.7152 (2)0.5145 (2)0.0365 (7)
C150.9071 (3)1.0806 (2)0.5933 (2)0.0446 (7)
H150.89911.14620.57620.054*
C161.0325 (3)1.0443 (3)0.6410 (2)0.0561 (9)
H161.10731.08490.65580.067*
C171.0448 (3)0.9487 (3)0.6659 (3)0.0607 (10)
H171.12870.92290.69700.073*
C180.9335 (3)0.8906 (3)0.6452 (3)0.0603 (9)
H180.94010.82510.66300.072*
C190.8101 (3)0.9309 (2)0.5970 (2)0.0461 (8)
H190.73430.89130.58260.055*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.02991 (19)0.03587 (19)0.03086 (18)−0.00479 (15)0.01014 (13)−0.00201 (15)
O10.0333 (11)0.0390 (11)0.0407 (11)−0.0073 (8)0.0192 (9)−0.0102 (9)
O20.0649 (14)0.0390 (12)0.0338 (10)−0.0139 (10)0.0206 (10)−0.0039 (9)
N10.0330 (13)0.0348 (13)0.0293 (12)0.0030 (10)0.0044 (10)−0.0020 (10)
N20.0286 (13)0.0446 (15)0.0342 (13)−0.0056 (11)0.0076 (10)−0.0026 (11)
C10.0239 (14)0.0372 (16)0.0392 (16)−0.0080 (12)0.0096 (12)−0.0133 (13)
C20.0455 (19)0.0363 (17)0.0480 (18)−0.0079 (14)0.0171 (14)−0.0074 (14)
C30.051 (2)0.0375 (18)0.073 (2)0.0010 (15)0.0197 (18)−0.0152 (17)
C40.060 (2)0.055 (2)0.059 (2)−0.0088 (17)0.0321 (18)−0.0267 (18)
C50.056 (2)0.056 (2)0.0395 (17)−0.0135 (17)0.0188 (15)−0.0146 (16)
C60.0332 (16)0.0377 (16)0.0336 (15)−0.0057 (13)0.0050 (12)−0.0114 (13)
C70.0418 (18)0.0504 (18)0.0330 (15)0.0001 (14)0.0000 (13)−0.0070 (14)
C80.0325 (16)0.0437 (18)0.0291 (14)0.0082 (13)0.0064 (12)0.0048 (13)
C90.0332 (16)0.0392 (16)0.0306 (14)0.0015 (13)0.0086 (12)0.0030 (13)
C100.057 (2)0.056 (2)0.0392 (17)−0.0067 (17)0.0138 (15)0.0105 (16)
C110.073 (3)0.060 (2)0.064 (2)−0.0266 (19)0.026 (2)0.0044 (19)
C120.079 (3)0.054 (2)0.064 (2)−0.0310 (19)0.025 (2)−0.0107 (18)
C130.075 (2)0.053 (2)0.0420 (18)−0.0196 (18)0.0224 (17)−0.0087 (16)
C140.0387 (17)0.0359 (16)0.0376 (16)−0.0031 (13)0.0142 (13)−0.0022 (13)
C150.0351 (17)0.054 (2)0.0463 (17)−0.0098 (15)0.0123 (14)−0.0063 (15)
C160.0306 (18)0.086 (3)0.050 (2)−0.0117 (17)0.0054 (15)−0.008 (2)
C170.0317 (19)0.098 (3)0.051 (2)0.0096 (19)0.0062 (15)0.012 (2)
C180.052 (2)0.067 (2)0.062 (2)0.0123 (18)0.0121 (17)0.0219 (18)
C190.0376 (18)0.053 (2)0.0483 (18)−0.0027 (15)0.0095 (14)0.0083 (15)

Geometric parameters (Å, °)

Zn1—O11.9814 (19)C6—C71.501 (4)
Zn1—O2i1.988 (2)C7—H7A0.9700
Zn1—N1i2.045 (2)C7—H7B0.9700
Zn1—N22.129 (2)C8—C91.448 (4)
Zn1—O1i2.155 (2)C8—H80.9300
O1—C11.349 (3)C9—C101.415 (4)
O1—Zn1i2.155 (2)C9—C141.423 (4)
O2—C141.313 (3)C10—C111.362 (4)
O2—Zn1i1.988 (2)C10—H100.9300
N1—C81.288 (3)C11—C121.389 (4)
N1—C71.484 (3)C11—H110.9300
N1—Zn1i2.045 (2)C12—C131.368 (4)
N2—C191.335 (3)C12—H120.9300
N2—C151.344 (3)C13—C141.413 (4)
C1—C21.394 (4)C13—H130.9300
C1—C61.411 (4)C15—C161.383 (4)
C2—C31.392 (4)C15—H150.9300
C2—H20.9300C16—C171.357 (5)
C3—C41.376 (4)C16—H160.9300
C3—H30.9300C17—C181.366 (5)
C4—C51.379 (4)C17—H170.9300
C4—H40.9300C18—C191.390 (4)
C5—C61.389 (4)C18—H180.9300
C5—H50.9300C19—H190.9300
O1—Zn1—O2i101.29 (8)C6—C7—H7A109.1
O1—Zn1—N1i127.04 (8)N1—C7—H7B109.1
O2i—Zn1—N1i92.31 (8)C6—C7—H7B109.1
O1—Zn1—N2112.80 (9)H7A—C7—H7B107.8
O2i—Zn1—N293.97 (9)N1—C8—C9127.0 (3)
N1i—Zn1—N2117.01 (8)N1—C8—H8116.5
O1—Zn1—O1i76.26 (8)C9—C8—H8116.5
O2i—Zn1—O1i175.72 (8)C10—C9—C14119.2 (3)
N1i—Zn1—O1i86.51 (8)C10—C9—C8116.3 (2)
N2—Zn1—O1i90.23 (8)C14—C9—C8124.4 (2)
C1—O1—Zn1135.25 (16)C11—C10—C9122.3 (3)
C1—O1—Zn1i120.19 (15)C11—C10—H10118.9
Zn1—O1—Zn1i103.74 (8)C9—C10—H10118.9
C14—O2—Zn1i125.11 (17)C10—C11—C12118.8 (3)
C8—N1—C7117.6 (2)C10—C11—H11120.6
C8—N1—Zn1i122.84 (19)C12—C11—H11120.6
C7—N1—Zn1i119.56 (18)C13—C12—C11120.6 (3)
C19—N2—C15117.8 (3)C13—C12—H12119.7
C19—N2—Zn1122.13 (19)C11—C12—H12119.7
C15—N2—Zn1120.0 (2)C12—C13—C14122.7 (3)
O1—C1—C2121.8 (2)C12—C13—H13118.6
O1—C1—C6119.1 (2)C14—C13—H13118.6
C2—C1—C6119.1 (2)O2—C14—C13119.3 (2)
C3—C2—C1120.5 (3)O2—C14—C9124.3 (2)
C3—C2—H2119.8C13—C14—C9116.4 (3)
C1—C2—H2119.8N2—C15—C16122.3 (3)
C4—C3—C2120.4 (3)N2—C15—H15118.8
C4—C3—H3119.8C16—C15—H15118.8
C2—C3—H3119.8C17—C16—C15119.1 (3)
C3—C4—C5119.6 (3)C17—C16—H16120.5
C3—C4—H4120.2C15—C16—H16120.5
C5—C4—H4120.2C16—C17—C18119.6 (3)
C4—C5—C6121.5 (3)C16—C17—H17120.2
C4—C5—H5119.2C18—C17—H17120.2
C6—C5—H5119.2C17—C18—C19118.8 (3)
C5—C6—C1119.0 (3)C17—C18—H18120.6
C5—C6—C7122.1 (3)C19—C18—H18120.6
C1—C6—C7118.9 (2)N2—C19—C18122.3 (3)
N1—C7—C6112.5 (2)N2—C19—H19118.8
N1—C7—H7A109.1C18—C19—H19118.8
O2i—Zn1—O1—C1−14.5 (3)C2—C1—C6—C7−177.7 (2)
N1i—Zn1—O1—C1−116.1 (2)C8—N1—C7—C6−125.5 (3)
N2—Zn1—O1—C184.8 (3)Zn1i—N1—C7—C656.0 (3)
O1i—Zn1—O1—C1169.1 (3)C5—C6—C7—N1122.3 (3)
O2i—Zn1—O1—Zn1i176.41 (8)C1—C6—C7—N1−60.5 (3)
N1i—Zn1—O1—Zn1i74.75 (12)C7—N1—C8—C9−178.2 (2)
N2—Zn1—O1—Zn1i−84.36 (10)Zn1i—N1—C8—C90.3 (4)
O1i—Zn1—O1—Zn1i0.0N1—C8—C9—C10−171.4 (3)
O1—Zn1—N2—C1953.3 (2)N1—C8—C9—C1411.1 (4)
O2i—Zn1—N2—C19157.3 (2)C14—C9—C10—C11−0.8 (5)
N1i—Zn1—N2—C19−108.1 (2)C8—C9—C10—C11−178.5 (3)
O1i—Zn1—N2—C19−21.9 (2)C9—C10—C11—C120.4 (5)
O1—Zn1—N2—C15−128.6 (2)C10—C11—C12—C130.0 (6)
O2i—Zn1—N2—C15−24.6 (2)C11—C12—C13—C14−0.1 (6)
N1i—Zn1—N2—C1570.0 (2)Zn1i—O2—C14—C13162.6 (2)
O1i—Zn1—N2—C15156.2 (2)Zn1i—O2—C14—C9−17.7 (4)
Zn1—O1—C1—C263.6 (4)C12—C13—C14—O2179.6 (3)
Zn1i—O1—C1—C2−128.6 (2)C12—C13—C14—C9−0.2 (5)
Zn1—O1—C1—C6−118.3 (2)C10—C9—C14—O2−179.1 (3)
Zn1i—O1—C1—C649.4 (3)C8—C9—C14—O2−1.6 (4)
O1—C1—C2—C3177.4 (3)C10—C9—C14—C130.6 (4)
C6—C1—C2—C3−0.6 (4)C8—C9—C14—C13178.1 (3)
C1—C2—C3—C41.1 (5)C19—N2—C15—C160.8 (4)
C2—C3—C4—C5−0.5 (5)Zn1—N2—C15—C16−177.4 (2)
C3—C4—C5—C6−0.6 (5)N2—C15—C16—C170.1 (5)
C4—C5—C6—C11.0 (4)C15—C16—C17—C18−1.1 (5)
C4—C5—C6—C7178.2 (3)C16—C17—C18—C191.1 (5)
O1—C1—C6—C5−178.5 (2)C15—N2—C19—C18−0.7 (4)
C2—C1—C6—C5−0.4 (4)Zn1—N2—C19—C18177.5 (2)
O1—C1—C6—C74.2 (4)C17—C18—C19—N2−0.3 (5)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2532).

References

  • Atakol, O., Tatar, L., Akay, M. A. & Ülkü, D. (1999). Anal. Sci.15, 199–200.
  • Bruker, (1998). SMART-NT and SAINT-NT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Huang, W., Zhu, H. B. & Gou, S. H. (2006). Coord. Chem. Rev 250, 414–423.
  • Kim, H. S., Kim, J. J. & Lee, B. G. (2000). Angew. Chem. Int. Ed 39, 4096–4098. [PubMed]
  • Marco, V. B. D., Tapparo, A., Dolmella, A. & Bombi, G. G. (2004). Inorg. Chim. Acta, 357, 135–142.
  • Moustafa, M. E. (2003). Synth. React. Inorg. Met.-Org. Chem.33, 453–468.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography