PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m340.
Published online 2008 January 11. doi:  10.1107/S1600536808000354
PMCID: PMC2960380

[μ-11,23-Dibromo-3,7,15,19-tetra­aza­tri­cyclo­[19.3.1.19,13]hexa­cosa-1(25),2,7,9,11,13(26),14,19,21,23-deca­ene-25,26-diolato-κ4 N 3,N 7,O,O′:κ4 O,O′,N 15,N 19]bis[perchloratocopper(II)]

Abstract

The title complex, [Cu2(C22H20Br2N4O2)(ClO4)2], was prepared by the condensation of 2,6-diformyl-4-bromo­phenol with 1,3-diamino­propane in the presence of copper(II) ions. The macrocyclic ligand shows an approximately planar structure except for the two propene groups in the macrocycle. The coordination polyhedron of each Cu atom can be described as distorted square pyramidal. The two Cu atoms are bridged by two phenolate O atoms of the macrocycle, with a Cu(...)Cu distance of 3.109 (2) Å.

Related literature

For related literature, see: Chen et al. (2005 [triangle]); Taniguchi (1984 [triangle]); Wang et al. (1997 [triangle]); Zhou et al. (2005 [triangle]); Mohanta et al. (1998 [triangle]); Wada et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m340-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C22H20Br2N4O2)(ClO4)2]
  • M r = 858.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m340-efi1.jpg
  • a = 15.7760 (18) Å
  • b = 8.6253 (10) Å
  • c = 21.501 (3) Å
  • β = 110.901 (2)°
  • V = 2733.2 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.74 mm−1
  • T = 191 (2) K
  • 0.20 × 0.16 × 0.14 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.42, T max = 0.52
  • 15132 measured reflections
  • 5366 independent reflections
  • 3505 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.138
  • S = 1.03
  • 5366 reflections
  • 379 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.89 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000354/hg2366sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000354/hg2366Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Fund of Innovative Experiments for Students, Hubei Open Center for the Experimental Teaching of Fundamental Chemistry, Wuhan Institute of Technology, for support.

supplementary crystallographic information

Comment

Schiff base macrocyclic ligands with two phenolic groups, capable of binding two metal ions in close coordination cavities simultaneously, are known to form various types of the transition metal complexes. These complexes can exhibit special optical, electric and magnetic properties (Mohanta et al., 1998; Wang et al., 1997).

Previous research shows that substituents on phenolic group has influences the structure and properties of these macrocyclic complexes. Much work have been done on this kind of complexes where the substituents in the phenolic group are found to be methyl, chlorine and n-butyl but few examples of bromide substituents are reported (Zhou et al., 2005; Chen et al., 2005).

In this work, a new dinuclear copper complex with Br substituent in phenolic group, [Cu2L(ClO4)2], was obtained and its crystal structure was determined by X-ray diffraction. Where, L denotes the above mentioned macrocyclic ligand. (Scheme).

A perspective view of the title complex is shown in Figure 1. The complex consist of two Cu(II) cations, one ligand and two perchlorate anions. The macrocyclic ligand exhibits an approximately planar structure. Each Cu atom has a slightly distorted square-pyramidal coordination with one O atom of a perchlorate anion in the apical position. Although the two Cu atom are in the same environment, there are small differences in the bond lengths and angles relevant to the copper coordination spheres. The base plane is composed of two imine N atoms and two phenolic O atoms with the mean plane deviation of 0.0227Å (for N1N4O1O2) and 0.0375Å (for N2N3O1O2), respectively. The lengths of Cu1—O3 and Cu2—O7 in the axial positions are 2.400 (6)Å and 2.421 (5) Å, respectively, that are somewhat larger than those of the bonds in the base plane, Cu—N or Cu—O (from 1.946 (8)Å to 1.982 (4) Å). Two Cu(II) ions in each center are located in the positions that slightly depart from relevant mean base planes towards the apical O atoms of perchlorate anions. (Distance from Cu1 to the center of the mean plane (I) of N1—N4—O1—O2 is 0.170 Å, Cu2 to the center of the mean plane(II) of N2—N3—O1—O2 is 0.169 Å.) The angles of axial Cu—O bonds with the relative mean planes (I) and (II) are 86.2° and 85.0°, respectively. Two perchlorate anions are located on opposite sides of the whole molecular plane. The presence of two bridging phenolic oxo atoms gives rise to a short metal-metal distance (Cu—Cu 3.109 (2) Å), typical for dinuclear complexes with macrocyclic phenoxo-bridging ligands.

Experimental

2,6-Diformyl-4-bromophenol was prepared according to literature procedures (Taniguchi, 1984). The title complex was synthesized by the following procedure. A solution of 1,3-diaminopropane(0.111 g, 1.5 mmol) in absolute ethanol (15 ml) was added to an ethanol solution (15 ml) of 2,6-Diformyl-4-bromophenol (0.344 g, 1.5 mmol) under stirring. To the suspension of above mixture, copper perchlorate hexahydrate (0.556 g, 1.5 mmol) and 1 ml triethylamine were added and stired for 20 h at ambient temperature. The resulting green precipitate was filtered, washed with ethanol (2 × 30 ml) and dissolved in acetonitrile (15 ml). Single crystals suitable for X-ray diffraction were obtained by a slow diffusion of ethyl acetate into the acetonitrile solution.

Refinement

All H atoms were placed in calculated positions, with C—H distances in the range of 0.93–0.97 Å, and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2–1.5 Ueq(C/O).

Figures

Fig. 1.
A view of the stucture of the title complex, showing the labeling of the non-H atoms and 30% probability ellipsoids; H atoms have been omitted for clarity.

Crystal data

[Cu2(C22H20Br2N4O2)(ClO4)2]F000 = 1688
Mr = 858.22Dx = 2.086 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3876 reflections
a = 15.7760 (18) Åθ = 2.6–26.0º
b = 8.6253 (10) ŵ = 4.74 mm1
c = 21.501 (3) ÅT = 191 (2) K
β = 110.901 (2)ºBlock, dark green
V = 2733.2 (6) Å30.20 × 0.16 × 0.14 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer5366 independent reflections
Radiation source: sealed tube3505 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.053
T = 191(2) Kθmax = 26.0º
phi and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −16→19
Tmin = 0.42, Tmax = 0.52k = −10→10
15132 measured reflectionsl = −25→26

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.138  w = 1/[σ2(Fo2) + (0.06P)2 + 1.55P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5366 reflectionsΔρmax = 0.56 e Å3
379 parametersΔρmin = −0.89 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1−0.09268 (5)−0.42485 (9)0.55710 (4)0.0518 (2)
Br20.61370 (5)0.46431 (9)0.43389 (4)0.0483 (2)
C10.2343 (5)−0.2131 (8)0.6347 (4)0.0444 (18)
H10.2347−0.27470.67030.053*
C20.1545 (5)−0.2072 (7)0.5796 (3)0.0360 (15)
C30.0825 (5)−0.2996 (9)0.5909 (4)0.0498 (19)
H30.0940−0.35030.63130.060*
C4−0.0015 (5)−0.3105 (9)0.5415 (4)0.0436 (17)
C5−0.0193 (5)−0.2402 (8)0.4820 (4)0.0442 (17)
H5−0.0761−0.25060.44870.053*
C60.0491 (5)−0.1503 (9)0.4703 (3)0.0446 (18)
C70.1345 (5)−0.1374 (8)0.5174 (3)0.0429 (17)
C80.0233 (5)−0.0779 (7)0.4047 (3)0.0386 (16)
H8−0.0362−0.09720.37690.046*
C90.0129 (5)0.0570 (10)0.3100 (4)0.056 (2)
H9A−0.0293−0.02520.28820.067*
H9B−0.02290.14630.31290.067*
C100.0641 (5)0.0982 (10)0.2672 (3)0.0509 (19)
H10A0.02260.12580.22310.061*
H10B0.10020.01040.26300.061*
C110.1244 (5)0.2319 (9)0.2975 (4)0.055 (2)
H11A0.08890.30870.31050.066*
H11B0.14330.27840.26350.066*
C120.2833 (4)0.2512 (10)0.3632 (3)0.0429 (17)
H120.28330.29840.32430.052*
C130.3678 (4)0.2573 (8)0.4152 (3)0.0360 (15)
C140.4363 (5)0.3465 (8)0.4044 (3)0.0423 (17)
H140.42380.40360.36540.051*
C150.5216 (5)0.3476 (8)0.4523 (3)0.0405 (17)
C160.5422 (5)0.2665 (8)0.5085 (3)0.0372 (15)
H160.60110.26830.53940.045*
C170.4748 (5)0.1777 (8)0.5214 (3)0.0390 (16)
C180.3842 (5)0.1748 (8)0.4747 (3)0.0374 (16)
C190.5020 (6)0.0874 (9)0.5857 (4)0.052 (2)
H190.56400.07470.60790.063*
C200.5105 (5)−0.0086 (9)0.6818 (4)0.053 (2)
H20A0.55560.07240.69880.064*
H20B0.5430−0.10390.68140.064*
C210.4607 (5)−0.0294 (9)0.7317 (4)0.054 (2)
H21A0.5031−0.06000.77500.064*
H21B0.43160.06660.73650.064*
C220.3907 (6)−0.1550 (11)0.7029 (4)0.063 (2)
H22A0.4236−0.24500.69650.076*
H22B0.3673−0.18220.73750.076*
Cl10.25784 (12)0.2959 (2)0.66515 (9)0.0465 (4)
Cl20.22902 (11)−0.2790 (2)0.33413 (9)0.0433 (4)
Cu10.32546 (6)−0.00913 (10)0.56944 (4)0.0405 (2)
Cu20.19480 (5)0.05601 (9)0.42474 (4)0.0350 (2)
N10.3106 (4)−0.1370 (8)0.6406 (3)0.0492 (15)
N20.0670 (4)0.0052 (7)0.3793 (3)0.0433 (15)
N30.2095 (4)0.1969 (6)0.3582 (3)0.0355 (12)
N40.4549 (5)0.0307 (8)0.6115 (3)0.0521 (17)
O10.2005 (3)−0.0499 (5)0.5072 (2)0.0401 (11)
O20.3201 (3)0.0963 (5)0.4862 (2)0.0375 (10)
O30.2773 (4)0.2128 (6)0.6155 (3)0.0512 (13)
O40.1906 (4)0.2219 (6)0.6771 (3)0.0582 (15)
O50.2216 (4)0.4368 (7)0.6433 (3)0.0577 (14)
O60.3286 (3)0.3008 (6)0.7254 (3)0.0534 (14)
O70.2527 (3)−0.1555 (6)0.3774 (3)0.0513 (14)
O80.2945 (3)−0.3882 (6)0.3531 (3)0.0532 (14)
O90.1471 (4)−0.3245 (6)0.3311 (3)0.0531 (14)
O100.2198 (4)−0.2300 (6)0.2715 (3)0.0551 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0498 (5)0.0487 (4)0.0545 (4)−0.0148 (4)0.0156 (4)−0.0125 (4)
Br20.0449 (4)0.0445 (4)0.0554 (5)−0.0174 (3)0.0177 (4)−0.0166 (3)
C10.047 (4)0.043 (4)0.042 (4)0.020 (3)0.015 (4)0.010 (3)
C20.050 (4)0.020 (3)0.040 (4)0.002 (3)0.018 (3)0.003 (3)
C30.047 (5)0.051 (5)0.049 (4)−0.002 (4)0.014 (4)−0.010 (4)
C40.030 (4)0.050 (4)0.046 (4)−0.003 (3)0.009 (3)−0.013 (3)
C50.034 (4)0.047 (4)0.054 (4)−0.007 (3)0.020 (3)−0.024 (4)
C60.043 (4)0.048 (4)0.037 (4)0.020 (3)0.008 (3)0.008 (3)
C70.048 (4)0.036 (4)0.034 (4)0.008 (3)0.000 (3)−0.005 (3)
C80.048 (4)0.027 (3)0.027 (3)−0.005 (3)−0.003 (3)0.002 (3)
C90.030 (4)0.057 (5)0.062 (5)−0.001 (3)−0.005 (4)0.013 (4)
C100.050 (4)0.060 (5)0.029 (4)0.000 (4)−0.003 (3)0.013 (3)
C110.042 (4)0.056 (5)0.048 (5)0.004 (4)−0.007 (4)0.017 (4)
C120.025 (3)0.079 (5)0.025 (3)0.008 (4)0.009 (3)−0.006 (3)
C130.034 (4)0.033 (3)0.040 (4)−0.002 (3)0.012 (3)−0.011 (3)
C140.046 (4)0.045 (4)0.038 (4)0.006 (3)0.018 (3)0.008 (3)
C150.043 (4)0.042 (4)0.042 (4)−0.021 (3)0.023 (3)−0.019 (3)
C160.031 (4)0.040 (4)0.029 (3)0.002 (3)−0.002 (3)−0.012 (3)
C170.043 (4)0.036 (3)0.038 (4)0.004 (3)0.014 (3)−0.013 (3)
C180.038 (4)0.029 (3)0.035 (4)0.007 (3)0.000 (3)−0.006 (3)
C190.043 (5)0.046 (5)0.051 (5)−0.003 (4)−0.005 (4)−0.002 (4)
C200.042 (4)0.048 (4)0.045 (4)0.000 (3)−0.014 (4)0.005 (3)
C210.046 (5)0.057 (5)0.043 (4)0.014 (4)−0.002 (4)0.015 (4)
C220.052 (5)0.074 (6)0.044 (5)−0.009 (4)−0.006 (4)0.014 (4)
Cl10.0314 (9)0.0590 (12)0.0457 (10)−0.0003 (8)0.0095 (8)−0.0014 (8)
Cl20.0343 (9)0.0461 (10)0.0434 (10)−0.0026 (7)0.0066 (8)−0.0110 (8)
Cu10.0354 (5)0.0367 (5)0.0385 (5)0.0055 (4)−0.0003 (4)0.0015 (3)
Cu20.0271 (4)0.0294 (4)0.0384 (4)0.0070 (3)−0.0006 (3)0.0026 (3)
N10.047 (4)0.054 (4)0.039 (3)−0.006 (3)0.006 (3)0.005 (3)
N20.026 (3)0.045 (3)0.045 (3)−0.003 (2)−0.005 (3)−0.002 (3)
N30.039 (3)0.039 (3)0.027 (3)0.007 (3)0.010 (3)0.002 (2)
N40.046 (4)0.053 (4)0.040 (4)0.012 (3)−0.006 (3)−0.007 (3)
O10.040 (3)0.040 (3)0.028 (2)0.000 (2)−0.003 (2)0.005 (2)
O20.039 (3)0.040 (3)0.030 (2)0.004 (2)0.009 (2)0.000 (2)
O30.051 (3)0.050 (3)0.053 (3)0.009 (2)0.020 (3)−0.004 (2)
O40.055 (3)0.057 (3)0.059 (3)−0.020 (3)0.015 (3)−0.009 (3)
O50.054 (3)0.060 (3)0.058 (3)0.020 (3)0.018 (3)0.005 (3)
O60.042 (3)0.054 (3)0.050 (3)0.016 (2)0.000 (2)−0.013 (2)
O70.031 (3)0.038 (3)0.063 (3)0.013 (2)−0.011 (2)−0.008 (2)
O80.041 (3)0.060 (3)0.052 (3)0.016 (3)0.009 (3)−0.017 (3)
O90.052 (3)0.041 (3)0.055 (3)−0.006 (2)0.005 (3)0.015 (2)
O100.058 (4)0.051 (3)0.055 (3)0.017 (3)0.018 (3)0.005 (3)

Geometric parameters (Å, °)

Br1—C41.871 (8)C16—C171.416 (10)
Br2—C151.922 (6)C16—H160.9300
C1—N11.337 (10)C17—C181.424 (9)
C1—C21.387 (10)C17—C191.509 (10)
C1—H10.9300C18—O21.312 (8)
C2—C71.396 (9)C19—N41.180 (10)
C2—C31.477 (10)C19—H190.9300
C3—C41.374 (10)C20—N41.490 (9)
C3—H30.9300C20—C211.550 (11)
C4—C51.352 (11)C20—H20A0.9700
C5—C61.421 (10)C20—H20B0.9700
C5—H50.9300C21—C221.513 (12)
C6—C71.370 (10)C21—H21A0.9700
C6—C81.463 (9)C21—H21B0.9700
C7—O11.366 (9)C22—N11.487 (9)
C8—N21.247 (9)C22—H22A0.9700
C8—H80.9300C22—H22B0.9700
C9—C101.468 (11)Cl1—O41.339 (5)
C9—N21.498 (9)Cl1—O51.354 (6)
C9—H9A0.9700Cl1—O61.376 (5)
C9—H9B0.9700Cl1—O31.408 (5)
C10—C111.489 (11)Cl2—O91.330 (6)
C10—H10A0.9700Cl2—O81.349 (5)
C10—H10B0.9700Cl2—O101.368 (6)
C11—N31.532 (8)Cl2—O71.375 (5)
C11—H11A0.9700Cu1—N41.947 (7)
C11—H11B0.9700Cu1—N11.966 (6)
C12—N31.222 (8)Cu1—O11.980 (5)
C12—C131.403 (9)Cu1—O21.983 (4)
C12—H120.9300Cu1—O32.400 (5)
C13—C181.405 (9)Cu2—N21.951 (6)
C13—C141.411 (9)Cu2—N31.953 (5)
C14—C151.373 (10)Cu2—O11.968 (5)
C14—H140.9300Cu2—O21.977 (5)
C15—C161.332 (10)Cu2—O72.421 (5)
N1—C1—C2125.0 (7)C21—C20—H20A107.8
N1—C1—H1117.5N4—C20—H20B107.8
C2—C1—H1117.5C21—C20—H20B107.8
C1—C2—C7131.3 (7)H20A—C20—H20B107.2
C1—C2—C3110.9 (6)C22—C21—C20106.0 (7)
C7—C2—C3117.7 (6)C22—C21—H21A110.5
C4—C3—C2119.7 (7)C20—C21—H21A110.5
C4—C3—H3120.1C22—C21—H21B110.5
C2—C3—H3120.1C20—C21—H21B110.5
C5—C4—C3121.3 (7)H21A—C21—H21B108.7
C5—C4—Br1119.5 (5)N1—C22—C21123.8 (7)
C3—C4—Br1119.2 (6)N1—C22—H22A106.4
C4—C5—C6119.7 (7)C21—C22—H22A106.4
C4—C5—H5120.1N1—C22—H22B106.4
C6—C5—H5120.1C21—C22—H22B106.4
C7—C6—C5121.5 (7)H22A—C22—H22B106.5
C7—C6—C8122.7 (7)O4—Cl1—O5103.3 (4)
C5—C6—C8115.8 (7)O4—Cl1—O6105.5 (4)
O1—C7—C6122.0 (6)O5—Cl1—O6113.6 (4)
O1—C7—C2117.9 (6)O4—Cl1—O3107.7 (3)
C6—C7—C2120.0 (7)O5—Cl1—O3111.9 (3)
N2—C8—C6131.3 (7)O6—Cl1—O3113.9 (3)
N2—C8—H8114.3O9—Cl2—O8115.7 (4)
C6—C8—H8114.3O9—Cl2—O10106.4 (3)
C10—C9—N2116.7 (6)O8—Cl2—O10108.3 (3)
C10—C9—H9A108.1O9—Cl2—O7106.7 (4)
N2—C9—H9A108.1O8—Cl2—O7110.0 (3)
C10—C9—H9B108.1O10—Cl2—O7109.5 (4)
N2—C9—H9B108.1N4—Cu1—N197.7 (3)
H9A—C9—H9B107.3N4—Cu1—O1166.5 (3)
C9—C10—C11108.8 (7)N1—Cu1—O193.4 (2)
C9—C10—H10A109.9N4—Cu1—O292.2 (3)
C11—C10—H10A109.9N1—Cu1—O2168.8 (2)
C9—C10—H10B109.9O1—Cu1—O276.07 (19)
C11—C10—H10B109.9N4—Cu1—O395.8 (2)
H10A—C10—H10B108.3N1—Cu1—O389.0 (2)
C10—C11—N3116.7 (6)O1—Cu1—O392.03 (19)
C10—C11—H11A108.1O2—Cu1—O395.11 (18)
N3—C11—H11A108.1N2—Cu2—N398.3 (3)
C10—C11—H11B108.1N2—Cu2—O193.1 (2)
N3—C11—H11B108.1N3—Cu2—O1165.9 (2)
H11A—C11—H11B107.3N2—Cu2—O2169.2 (2)
N3—C12—C13133.6 (7)N3—Cu2—O291.6 (2)
N3—C12—H12113.2O1—Cu2—O276.50 (19)
C13—C12—H12113.2N2—Cu2—O795.6 (2)
C12—C13—C18121.3 (6)N3—Cu2—O790.0 (2)
C12—C13—C14117.1 (6)O1—Cu2—O797.26 (19)
C18—C13—C14121.6 (6)O2—Cu2—O788.63 (17)
C15—C14—C13118.9 (6)C1—N1—C22118.8 (6)
C15—C14—H14120.6C1—N1—Cu1123.7 (5)
C13—C14—H14120.6C22—N1—Cu1117.4 (5)
C16—C15—C14122.3 (6)C8—N2—C9113.5 (6)
C16—C15—Br2120.3 (5)C8—N2—Cu2123.0 (5)
C14—C15—Br2117.4 (5)C9—N2—Cu2123.5 (5)
C15—C16—C17120.3 (6)C12—N3—C11121.2 (6)
C15—C16—H16119.8C12—N3—Cu2122.1 (5)
C17—C16—H16119.8C11—N3—Cu2116.7 (5)
C16—C17—C18120.4 (6)C19—N4—C20109.2 (7)
C16—C17—C19118.1 (6)C19—N4—Cu1125.9 (6)
C18—C17—C19121.5 (7)C20—N4—Cu1124.9 (6)
O2—C18—C13122.0 (6)C7—O1—Cu2127.6 (4)
O2—C18—C17121.6 (6)C7—O1—Cu1128.4 (4)
C13—C18—C17116.5 (7)Cu2—O1—Cu1103.9 (2)
N4—C19—C17128.6 (7)C18—O2—Cu2128.3 (4)
N4—C19—H19115.7C18—O2—Cu1128.2 (4)
C17—C19—H19115.7Cu2—O2—Cu1103.5 (2)
N4—C20—C21117.9 (6)Cl1—O3—Cu1155.0 (3)
N4—C20—H20A107.8Cl2—O7—Cu2144.6 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2366).

References

  • Bruker (2000). SMART, SAINT, SADABS and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, L., Zhou, H., Pan, Z.-Q., Hu, X.-L. & Liu, B. (2005). Acta Cryst. E61, m1467–m1469.
  • Mohanta, S., Baitalik, S., Dutta, S. K. & Adhikary, B. (1998). Polyhedron, 17, 2669–2677.
  • Taniguchi, S. (1984). Bull. Chem. Soc. Jpn, 57, 2683–2689.
  • Wada, H., Motada, K.-I., Ohba, M., Sakiyama, H., Matsumoto, N. & Ōkawa, H. (1995). Bull. Chem. Soc. Jpn, 68, 1105–1114.
  • Wang, Z., Reibenspies, J. & Martell, A. E. (1997). Inorg. Chem.36, 629–636.
  • Zhou, H., Peng, Z. H., Pan, Z. Q., Liu, B. & Y. Q. (2005). J. Coord. Chem.58, 443–451.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography