PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o503.
Published online 2008 January 23. doi:  10.1107/S1600536808000548
PMCID: PMC2960376

2-{3-Cyano-5,5-dimethyl-4-[4-(piperidin-1-yl)buta-1,3-dien­yl]-2,5-dihydro­furan-2-yl­idene}malononitrile

Abstract

The title compound, C19H20N4O, crystallizes as twinned crystals containing two independent mol­ecules which pack into a three-dimensional matrix via several C—H(...)N(cyano) inter­actions, with a C(...)N range of 3.324 (8)–3.568 (8) Å and C—H(...)N angles in the range 147–166°.

Related literature

For general background, see: Kay et al. (2004 [triangle]); Gainsford et al. (2007 [triangle], 2008 [triangle]). For related structures, see: Bock et al. (1996 [triangle]); Marder et al. (1993 [triangle]); Reck & Dahne (2006 [triangle]); Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o503-scheme1.jpg

Experimental

Crystal data

  • C19H20N4O
  • M r = 320.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o503-efi1.jpg
  • a = 15.094 (4) Å
  • b = 18.994 (5) Å
  • c = 13.332 (4) Å
  • β = 116.193 (8)°
  • V = 3429.7 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 119 (2) K
  • 0.35 × 0.25 × 0.09 mm

Data collection

  • Bruker–Nonius APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.733, T max = 1.0 (expected range = 0.728–0.993)
  • 18712 measured reflections
  • 11128 independent reflections
  • 5766 reflections with I > 2σ(I)
  • R int = 0.088

Refinement

  • R[F 2 > 2σ(F 2)] = 0.079
  • wR(F 2) = 0.203
  • S = 1.02
  • 11128 reflections
  • 424 parameters
  • H-atom parameters constrained
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT and SADABS (Sheldrick, 2003 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000548/gg3141sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000548/gg3141Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Professor Ward T. Robinson and Dr J. Wikaira of the University of Canterbury for their assistance in data collection.

supplementary crystallographic information

Comment

We have previously reported on the synthesis of a number of high figure of merit chromophores for nonlinear optics (Kay et al., 2004), and the X-ray crystallographic and structural properties of crucial dye precursors used (Gainsford et al., 2007, 2008). As part of our ongoing studies of the structure of these highly polar materials, we report here the crystallographic data of another of the chromophore precursors.

The asymmetric unit contents of the title compound (I) is shown in Figures 1 (unprimed & primed independent molecules hereafter A & B) with hydrogen bond data in Table 1. The structures are almost superimposable with a weighted r.m.s. fit between A & inverted B molecules of 0.61Å (Spek, 2003). The only notable difference in bond lengths concerns those involving atoms C11 & C11'. Minor differences in orientations may be attributed to the packing interactions (Table 1). For example the polyene chains C4, C11—C14 are tilted at 7.1 (5)° & 3.4 (6)° to the "CDFP" 5-membered ring planes (O1, C4—C8) in molecules A & B respectively. Similarly the dicyanomethylene groups (N1,N2, C1—C3) are at 3.5 (4) and 7.7 (4)° to the CDFP ring in A & B, respectively. The piperidin-1-yl rings adopt a chair conformation.

The polyene-C—H···N interactions with adjacent cyano N atoms (C13', C14, C14') are commonly observed for these molecules (Gainsford et al., 2008) as is the methylene-C19—H19A interaction with N2' (entry 5, Table 1). Only once before has it been reported when the adjacent polyene C hydrogen atoms (on C13' & C14') are both H bonded to cyano N atoms (NEQHAT01, Reck & Dahne, 2006) from the Cambridge Structural Database (Version 5.29 with November 2007 updates; Allen, 2002). There are few meta-C(C16')—H···N(cyano) interactions reported: two examples exist in the somewhat related compounds YAMXEP (Marder et al., 1993) and ZOSZAI (Bock et al., 1996) with H···N, C—H···N 2.69 & 2.64 Å, 148° & 147°, respectively.

Experimental

To a solution of 5.8 mmole of {4-(4-Acetanilido-trans-1,3-butadienyl)-3-cyano-5,5-dimethyl-2(5H)-furanylidene} propanedinitrile (compound 11b, Kay et al., 2004) in 30 ml of ethanol was added an equimolar quantity of piperidine. The solution was refluxed 1 h, cooled and the product collected by filtration and washed with ethanol. Final crystallization was from ethanol.

Refinement

The measured crystal was a pseudo-merohedral twin. The twin operation was a 2-fold rotation about (1 0 - 2), with twin matrix (-1 0 - 1/0 - 1 0/-0.001 0 1) as indicated by the PLATON/TwinRotMat (Spek, 2003) utility that also produced an HKLF5 file for twin refinement with SHELXL97. The twin fraction refined to 0.5124 (16). Data was restricted to 2θ≤ 50° (see _refine_special_details for other statistics of the dataset used).

All H atoms bound to carbon were constrained to their expected geometries (C—H 0.98, 0.99 Å). All methyl and tertiary H atoms were refined with Uiso 1.5 & 1.2 times respectively that of the Ueq of their parent atom. All non-hydrogen atoms were refined with anisotropic thermal parameters.

Figures

Fig. 1.
A view of the asymmetic unit; displacement ellipsoids are shown at the 30% probability level. All H atoms except H14 omitted for clarity; dotted line represents a hydrogen bond interaction (Table 1).

Crystal data

C19H20N4OF000 = 1360
Mr = 320.39Dx = 1.241 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4176 reflections
a = 15.094 (4) Åθ = 2.7–30.2º
b = 18.994 (5) ŵ = 0.08 mm1
c = 13.332 (4) ÅT = 119 (2) K
β = 116.193 (8)ºPlate, red
V = 3429.7 (16) Å30.35 × 0.25 × 0.09 mm
Z = 8

Data collection

Bruker–Nonius APEXII CCD area-detector diffractometer11128 independent reflections
Radiation source: fine-focus sealed tube5766 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.088
Detector resolution: 8.192 pixels mm-1θmax = 25.0º
T = 119(2) Kθmin = 2.0º
/f and /w scansh = −16→17
Absorption correction: multi-scan(Blessing, 1995)k = −22→22
Tmin = 0.733, Tmax = 1.0l = −15→15
18712 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.079  w = 1/[σ2(Fo2) + (0.041P)2 + 5.943P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.203(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.46 e Å3
11128 reflectionsΔρmin = −0.36 e Å3
424 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. An extinction parameter was refined. Data above 2θ 50° were excluded on the basis of low intensity/error ratio. A total of 477 reflections were either not recorded or affected by the backstop within this θ limit (of 6035 expected). A further 13 reflections (and their Friedel opposites) were omitted from the refinement on the basis of being clearly outliers (with Fo<<Fc).Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.7393 (3)0.8303 (2)0.4515 (3)0.0343 (10)
N10.9567 (4)0.7590 (3)0.2970 (5)0.0422 (15)
N20.8344 (4)0.9570 (3)0.3440 (4)0.0489 (15)
N30.8724 (4)0.6091 (3)0.4162 (5)0.0473 (15)
N40.5250 (3)0.5399 (2)0.7252 (4)0.0326 (12)
C10.9063 (4)0.7849 (3)0.3282 (5)0.0356 (16)
C20.8470 (4)0.8229 (3)0.3707 (5)0.0321 (14)
C30.8397 (4)0.8966 (4)0.3552 (5)0.0362 (15)
C40.7276 (4)0.7135 (3)0.5029 (5)0.0289 (15)
C50.6857 (4)0.7869 (3)0.4989 (5)0.0311 (15)
C60.7962 (4)0.7888 (3)0.4209 (5)0.0305 (14)
C70.7908 (4)0.7191 (3)0.4492 (5)0.0283 (14)*
C80.5770 (4)0.7903 (3)0.4147 (5)0.0395 (16)
H8A0.55450.83940.40550.059*
H8B0.53780.76210.44200.059*
H8C0.56900.77180.34260.059*
C90.7073 (4)0.8205 (3)0.6121 (5)0.0400 (17)
H9A0.69050.87070.60150.060*
H9B0.77760.81510.66300.060*
H9C0.66770.79710.64400.060*
C100.8375 (4)0.6601 (3)0.4304 (5)0.0336 (15)
C110.7080 (4)0.6540 (3)0.5476 (5)0.0344 (16)
H110.74360.61260.54860.041*
C120.6398 (4)0.6493 (3)0.5920 (4)0.0297 (14)
H120.60460.69060.59250.036*
C130.6206 (4)0.5883 (3)0.6352 (5)0.0323 (15)
H130.65570.54620.63870.039*
C140.5483 (4)0.5901 (3)0.6736 (5)0.0362 (16)
H140.51170.63270.66100.043*
C150.4434 (4)0.5482 (3)0.7556 (5)0.0389 (16)
H15A0.41200.59480.73050.047*
H15B0.46900.54580.83790.047*
C160.3684 (4)0.4911 (3)0.7020 (5)0.0438 (17)*
H16A0.33930.49590.61970.053*
H16B0.31470.49580.72500.053*
C170.4162 (4)0.4197 (3)0.7361 (5)0.0448 (17)
H17A0.36670.38240.69820.054*
H17B0.44120.41350.81780.054*
C180.5018 (4)0.4130 (3)0.7040 (6)0.0430 (17)*
H18A0.53550.36730.73070.052*
H18B0.47560.41430.62160.052*
C190.5750 (4)0.4721 (3)0.7545 (5)0.0391 (16)
H19A0.60840.46690.83680.047*
H19B0.62590.46970.72670.047*
O1'0.2394 (3)0.8340 (2)0.2535 (3)0.0340 (10)
N1'0.4636 (4)0.7639 (3)0.6209 (5)0.0443 (15)
N2'0.3455 (4)0.9652 (3)0.4508 (4)0.0480 (15)
N3'0.3582 (4)0.6149 (3)0.4407 (4)0.0443 (15)
N4'0.0597 (3)0.5220 (2)−0.2095 (4)0.0313 (12)
C1'0.4113 (4)0.7928 (3)0.5417 (5)0.0347 (15)
C2'0.3478 (4)0.8300 (3)0.4436 (5)0.0288 (14)
C3'0.3455 (4)0.9041 (4)0.4475 (5)0.0334 (15)
C4'0.2259 (4)0.7152 (3)0.1981 (5)0.0269 (14)
C5'0.1910 (4)0.7881 (3)0.1521 (5)0.0320 (15)
C6'0.2942 (4)0.7932 (3)0.3443 (5)0.0311 (15)
C7'0.2857 (4)0.7224 (3)0.3153 (5)0.0295 (15)
C8'0.0811 (4)0.7979 (3)0.1116 (5)0.0465 (18)
H8'A0.06530.84820.10260.070*
H8'B0.06130.77780.16630.070*
H8'C0.04560.77400.03960.070*
C9'0.2278 (4)0.8151 (3)0.0713 (5)0.0422 (17)
H9'A0.21700.86600.06220.063*
H9'B0.19180.7918−0.00110.063*
H9'C0.29840.80500.10020.063*
C10'0.3282 (4)0.6651 (3)0.3876 (5)0.0315 (15)
C11'0.2043 (4)0.6539 (3)0.1390 (5)0.0303 (14)
H11'0.22990.61190.18040.036*
C12'0.1479 (4)0.6464 (3)0.0229 (5)0.0296 (14)
H12'0.11880.6872−0.02030.035*
C13'0.1330 (4)0.5823 (3)−0.0312 (5)0.0318 (15)
H13'0.16080.54070.01030.038*
C14'0.0770 (4)0.5789 (3)−0.1468 (5)0.0330 (15)
H14'0.04860.6217−0.18410.040*
C15'−0.0091 (4)0.5216 (3)−0.3290 (5)0.0425 (18)
H15C0.02590.5050−0.37230.051*
H15D−0.03240.5702−0.35340.051*
C16'−0.0964 (4)0.4748 (3)−0.3530 (5)0.0440 (17)
H16C−0.13870.4728−0.43460.053*
H16D−0.13620.4944−0.31720.053*
C17'−0.0618 (4)0.4010 (3)−0.3085 (5)0.0444 (18)
H17C−0.03000.3789−0.35160.053*
H17D−0.11940.3718−0.31830.053*
C18'0.0114 (4)0.4035 (3)−0.1846 (5)0.0419 (18)
H18C−0.02240.4209−0.14060.050*
H18D0.03620.3554−0.15830.050*
C19'0.0967 (4)0.4509 (3)−0.1666 (5)0.0374 (15)
H19C0.14220.4535−0.08580.045*
H19D0.13370.4317−0.20600.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.041 (3)0.032 (2)0.036 (3)0.000 (2)0.023 (2)0.003 (2)
N10.037 (3)0.047 (4)0.047 (4)0.001 (3)0.023 (3)0.002 (3)
N20.066 (4)0.047 (4)0.037 (4)−0.002 (3)0.026 (3)−0.004 (3)
N30.051 (4)0.047 (4)0.053 (4)0.002 (3)0.031 (3)0.005 (3)
N40.028 (3)0.036 (3)0.034 (3)0.000 (3)0.014 (2)0.002 (3)
C10.024 (4)0.039 (4)0.035 (4)−0.001 (3)0.005 (3)0.002 (3)
C20.033 (3)0.034 (4)0.032 (4)−0.004 (3)0.016 (3)−0.002 (3)
C30.036 (4)0.044 (4)0.028 (4)−0.006 (4)0.014 (3)−0.004 (3)
C40.024 (3)0.030 (4)0.030 (4)−0.008 (3)0.010 (3)−0.004 (3)
C50.037 (4)0.029 (4)0.035 (4)−0.007 (3)0.023 (3)−0.002 (3)
C60.025 (3)0.043 (4)0.024 (3)−0.001 (3)0.012 (3)−0.001 (3)
C80.033 (4)0.047 (4)0.040 (4)0.005 (3)0.017 (3)0.005 (3)
C90.053 (4)0.044 (4)0.027 (4)−0.004 (3)0.021 (3)−0.010 (3)
C100.030 (4)0.042 (4)0.027 (3)−0.003 (3)0.011 (3)0.008 (3)
C110.028 (3)0.041 (4)0.034 (4)−0.006 (3)0.014 (3)0.000 (3)
C120.023 (3)0.035 (4)0.027 (3)−0.004 (3)0.007 (3)0.000 (3)
C130.030 (4)0.031 (4)0.035 (4)−0.003 (3)0.013 (3)−0.001 (3)
C140.029 (4)0.039 (4)0.036 (4)−0.006 (3)0.010 (3)0.002 (3)
C150.036 (4)0.043 (4)0.045 (4)−0.007 (3)0.024 (3)0.001 (3)
C170.043 (4)0.046 (4)0.047 (4)−0.013 (4)0.020 (3)−0.005 (4)
C190.034 (4)0.047 (4)0.039 (4)0.008 (3)0.018 (3)0.010 (3)
O1'0.038 (3)0.037 (3)0.022 (2)0.001 (2)0.0086 (19)−0.005 (2)
N1'0.045 (4)0.045 (4)0.034 (4)0.003 (3)0.010 (3)−0.007 (3)
N2'0.060 (4)0.049 (4)0.037 (4)−0.004 (3)0.023 (3)−0.004 (3)
N3'0.042 (3)0.051 (4)0.035 (3)0.006 (3)0.012 (3)0.003 (3)
N4'0.035 (3)0.024 (3)0.028 (3)−0.001 (2)0.008 (2)−0.003 (2)
C1'0.027 (4)0.043 (4)0.029 (4)−0.004 (3)0.007 (3)−0.008 (3)
C2'0.022 (3)0.034 (4)0.028 (3)−0.001 (3)0.009 (3)−0.001 (3)
C3'0.035 (4)0.047 (4)0.020 (3)−0.004 (4)0.014 (3)−0.006 (3)
C4'0.020 (3)0.033 (4)0.027 (3)−0.001 (3)0.009 (2)−0.005 (3)
C5'0.031 (4)0.043 (4)0.015 (3)−0.005 (3)0.004 (2)−0.006 (3)
C6'0.020 (3)0.046 (4)0.024 (3)−0.001 (3)0.008 (3)−0.003 (3)
C7'0.021 (3)0.035 (4)0.028 (4)0.002 (3)0.007 (3)0.000 (3)
C8'0.046 (4)0.055 (4)0.034 (4)0.009 (4)0.013 (3)−0.001 (3)
C9'0.059 (4)0.039 (4)0.030 (4)0.002 (3)0.020 (3)0.006 (3)
C10'0.026 (4)0.037 (4)0.030 (4)−0.001 (3)0.010 (3)−0.006 (3)
C11'0.024 (3)0.036 (4)0.026 (3)0.004 (3)0.007 (3)0.000 (3)
C12'0.031 (3)0.028 (3)0.031 (4)0.003 (3)0.015 (3)0.000 (3)
C13'0.026 (3)0.038 (4)0.028 (4)−0.001 (3)0.009 (3)−0.002 (3)
C14'0.034 (4)0.028 (4)0.036 (4)−0.002 (3)0.015 (3)−0.006 (3)
C15'0.051 (4)0.045 (4)0.021 (3)0.008 (4)0.007 (3)0.000 (3)
C16'0.036 (4)0.054 (5)0.035 (4)0.000 (4)0.009 (3)−0.004 (3)
C17'0.034 (4)0.052 (5)0.043 (4)−0.007 (4)0.014 (3)−0.010 (3)
C18'0.050 (4)0.041 (4)0.034 (4)−0.005 (3)0.017 (3)−0.005 (3)
C19'0.037 (4)0.033 (4)0.037 (4)0.010 (3)0.012 (3)0.000 (3)

Geometric parameters (Å, °)

O1—C61.355 (6)O1'—C6'1.365 (6)
O1—C51.478 (6)O1'—C5'1.500 (6)
N1—C11.128 (7)N1'—C1'1.141 (7)
N2—C31.156 (7)N2'—C3'1.161 (7)
N3—C101.157 (7)N3'—C10'1.154 (7)
N4—C141.310 (7)N4'—C14'1.320 (6)
N4—C191.458 (6)N4'—C15'1.468 (6)
N4—C151.466 (7)N4'—C19'1.477 (6)
C1—C21.446 (8)C1'—C2'1.422 (8)
C2—C61.381 (8)C2'—C6'1.396 (7)
C2—C31.412 (8)C2'—C3'1.410 (8)
C4—C111.370 (7)C4'—C11'1.362 (7)
C4—C71.426 (8)C4'—C7'1.425 (7)
C4—C51.523 (8)C4'—C5'1.511 (7)
C5—C81.527 (7)C5'—C9'1.503 (8)
C5—C91.534 (8)C5'—C8'1.512 (7)
C6—C71.390 (7)C6'—C7'1.390 (7)
C7—C101.404 (8)C7'—C10'1.407 (8)
C8—H8A0.9800C8'—H8'A0.9800
C8—H8B0.9800C8'—H8'B0.9800
C8—H8C0.9800C8'—H8'C0.9800
C9—H9A0.9800C9'—H9'A0.9800
C9—H9B0.9800C9'—H9'B0.9800
C9—H9C0.9800C9'—H9'C0.9800
C11—C121.398 (7)C11'—C12'1.405 (8)
C11—H110.9500C11'—H11'0.9500
C12—C131.380 (7)C12'—C13'1.382 (7)
C12—H120.9500C12'—H12'0.9500
C13—C141.396 (8)C13'—C14'1.395 (7)
C13—H130.9500C13'—H13'0.9500
C14—H140.9500C14'—H14'0.9500
C15—C161.501 (7)C15'—C16'1.503 (8)
C15—H15A0.9900C15'—H15C0.9900
C15—H15B0.9900C15'—H15D0.9900
C16—C171.509 (7)C16'—C17'1.522 (8)
C16—H16A0.9900C16'—H16C0.9900
C16—H16B0.9900C16'—H16D0.9900
C17—C181.536 (8)C17'—C18'1.530 (7)
C17—H17A0.9900C17'—H17C0.9900
C17—H17B0.9900C17'—H17D0.9900
C18—C191.508 (7)C18'—C19'1.501 (7)
C18—H18A0.9900C18'—H18C0.9900
C18—H18B0.9900C18'—H18D0.9900
C19—H19A0.9900C19'—H19C0.9900
C19—H19B0.9900C19'—H19D0.9900
C6—O1—C5110.2 (4)C6'—O1'—C5'109.4 (4)
C14—N4—C19123.9 (5)C14'—N4'—C15'122.6 (5)
C14—N4—C15121.3 (5)C14'—N4'—C19'124.6 (5)
C19—N4—C15114.8 (5)C15'—N4'—C19'112.4 (4)
N1—C1—C2175.4 (7)N1'—C1'—C2'178.8 (7)
C6—C2—C3120.7 (6)C6'—C2'—C3'121.4 (5)
C6—C2—C1121.9 (5)C6'—C2'—C1'119.8 (5)
C3—C2—C1117.4 (6)C3'—C2'—C1'118.7 (5)
N2—C3—C2179.1 (8)N2'—C3'—C2'178.7 (7)
C11—C4—C7126.9 (6)C11'—C4'—C7'126.2 (5)
C11—C4—C5127.2 (5)C11'—C4'—C5'126.6 (5)
C7—C4—C5105.9 (5)C7'—C4'—C5'107.2 (5)
O1—C5—C4103.2 (4)O1'—C5'—C9'105.1 (4)
O1—C5—C8106.0 (5)O1'—C5'—C4'102.9 (4)
C4—C5—C8111.1 (5)C9'—C5'—C4'115.5 (5)
O1—C5—C9105.7 (4)O1'—C5'—C8'105.8 (5)
C4—C5—C9116.2 (5)C9'—C5'—C8'113.3 (5)
C8—C5—C9113.5 (5)C4'—C5'—C8'112.8 (5)
O1—C6—C2115.8 (5)O1'—C6'—C7'110.9 (5)
O1—C6—C7110.5 (5)O1'—C6'—C2'115.4 (5)
C2—C6—C7133.7 (6)C7'—C6'—C2'133.7 (6)
C6—C7—C10128.1 (5)C6'—C7'—C10'126.9 (5)
C6—C7—C4109.9 (5)C6'—C7'—C4'109.5 (5)
C10—C7—C4122.0 (5)C10'—C7'—C4'123.6 (5)
C5—C8—H8A109.5C5'—C8'—H8'A109.5
C5—C8—H8B109.5C5'—C8'—H8'B109.5
H8A—C8—H8B109.5H8'A—C8'—H8'B109.5
C5—C8—H8C109.5C5'—C8'—H8'C109.5
H8A—C8—H8C109.5H8'A—C8'—H8'C109.5
H8B—C8—H8C109.5H8'B—C8'—H8'C109.5
C5—C9—H9A109.5C5'—C9'—H9'A109.5
C5—C9—H9B109.5C5'—C9'—H9'B109.5
H9A—C9—H9B109.5H9'A—C9'—H9'B109.5
C5—C9—H9C109.5C5'—C9'—H9'C109.5
H9A—C9—H9C109.5H9'A—C9'—H9'C109.5
H9B—C9—H9C109.5H9'B—C9'—H9'C109.5
N3—C10—C7176.2 (6)N3'—C10'—C7'174.9 (6)
C4—C11—C12125.3 (6)C4'—C11'—C12'126.7 (6)
C4—C11—H11117.3C4'—C11'—H11'116.7
C12—C11—H11117.3C12'—C11'—H11'116.7
C13—C12—C11124.1 (6)C13'—C12'—C11'122.9 (6)
C13—C12—H12118.0C13'—C12'—H12'118.5
C11—C12—H12118.0C11'—C12'—H12'118.5
C12—C13—C14118.4 (6)C12'—C13'—C14'119.8 (6)
C12—C13—H13120.8C12'—C13'—H13'120.1
C14—C13—H13120.8C14'—C13'—H13'120.1
N4—C14—C13127.5 (6)N4'—C14'—C13'126.3 (6)
N4—C14—H14116.3N4'—C14'—H14'116.9
C13—C14—H14116.3C13'—C14'—H14'116.9
N4—C15—C16109.8 (5)N4'—C15'—C16'111.6 (5)
N4—C15—H15A109.7N4'—C15'—H15C109.3
C16—C15—H15A109.7C16'—C15'—H15C109.3
N4—C15—H15B109.7N4'—C15'—H15D109.3
C16—C15—H15B109.7C16'—C15'—H15D109.3
H15A—C15—H15B108.2H15C—C15'—H15D108.0
C15—C16—C17110.3 (5)C15'—C16'—C17'110.2 (5)
C15—C16—H16A109.6C15'—C16'—H16C109.6
C17—C16—H16A109.6C17'—C16'—H16C109.6
C15—C16—H16B109.6C15'—C16'—H16D109.6
C17—C16—H16B109.6C17'—C16'—H16D109.6
H16A—C16—H16B108.1H16C—C16'—H16D108.1
C16—C17—C18109.8 (5)C16'—C17'—C18'110.6 (5)
C16—C17—H17A109.7C16'—C17'—H17C109.5
C18—C17—H17A109.7C18'—C17'—H17C109.5
C16—C17—H17B109.7C16'—C17'—H17D109.5
C18—C17—H17B109.7C18'—C17'—H17D109.5
H17A—C17—H17B108.2H17C—C17'—H17D108.1
C19—C18—C17110.8 (5)C19'—C18'—C17'110.6 (5)
C19—C18—H18A109.5C19'—C18'—H18C109.5
C17—C18—H18A109.5C17'—C18'—H18C109.5
C19—C18—H18B109.5C19'—C18'—H18D109.5
C17—C18—H18B109.5C17'—C18'—H18D109.5
H18A—C18—H18B108.1H18C—C18'—H18D108.1
N4—C19—C18110.3 (5)N4'—C19'—C18'109.6 (4)
N4—C19—H19A109.6N4'—C19'—H19C109.8
C18—C19—H19A109.6C18'—C19'—H19C109.8
N4—C19—H19B109.6N4'—C19'—H19D109.8
C18—C19—H19B109.6C18'—C19'—H19D109.8
H19A—C19—H19B108.1H19C—C19'—H19D108.2
C6—O1—C5—C45.6 (5)C6'—O1'—C5'—C9'−121.2 (5)
C6—O1—C5—C8−111.2 (5)C6'—O1'—C5'—C4'0.1 (6)
C6—O1—C5—C9128.1 (5)C6'—O1'—C5'—C8'118.7 (5)
C11—C4—C5—O1174.9 (5)C11'—C4'—C5'—O1'−178.6 (5)
C7—C4—C5—O1−5.7 (6)C7'—C4'—C5'—O1'1.6 (6)
C11—C4—C5—C8−71.9 (7)C11'—C4'—C5'—C9'−64.7 (8)
C7—C4—C5—C8107.4 (5)C7'—C4'—C5'—C9'115.5 (5)
C11—C4—C5—C959.8 (7)C11'—C4'—C5'—C8'67.9 (8)
C7—C4—C5—C9−120.8 (5)C7'—C4'—C5'—C8'−112.0 (5)
C5—O1—C6—C2177.3 (5)C5'—O1'—C6'—C7'−1.7 (7)
C5—O1—C6—C7−3.3 (6)C5'—O1'—C6'—C2'176.7 (5)
C3—C2—C6—O10.9 (8)C3'—C2'—C6'—O1'−0.9 (8)
C1—C2—C6—O1−176.6 (5)C1'—C2'—C6'—O1'−176.6 (5)
C3—C2—C6—C7−178.2 (6)C3'—C2'—C6'—C7'177.0 (7)
C1—C2—C6—C74.3 (11)C1'—C2'—C6'—C7'1.3 (11)
O1—C6—C7—C10179.1 (5)O1'—C6'—C7'—C10'−177.2 (5)
C2—C6—C7—C10−1.7 (11)C2'—C6'—C7'—C10'4.8 (11)
O1—C6—C7—C4−0.6 (7)O1'—C6'—C7'—C4'2.8 (7)
C2—C6—C7—C4178.5 (6)C2'—C6'—C7'—C4'−175.2 (6)
C11—C4—C7—C6−176.5 (5)C11'—C4'—C7'—C6'177.5 (6)
C5—C4—C7—C64.1 (7)C5'—C4'—C7'—C6'−2.7 (6)
C11—C4—C7—C103.8 (10)C11'—C4'—C7'—C10'−2.5 (10)
C5—C4—C7—C10−175.6 (5)C5'—C4'—C7'—C10'177.3 (5)
C7—C4—C11—C12−174.8 (6)C7'—C4'—C11'—C12'−177.9 (6)
C5—C4—C11—C124.4 (10)C5'—C4'—C11'—C12'2.3 (10)
C4—C11—C12—C13179.1 (5)C4'—C11'—C12'—C13'177.1 (6)
C11—C12—C13—C14−177.9 (6)C11'—C12'—C13'—C14'−179.4 (5)
C19—N4—C14—C131.9 (10)C15'—N4'—C14'—C13'173.0 (6)
C15—N4—C14—C13−176.8 (6)C19'—N4'—C14'—C13'0.6 (10)
C12—C13—C14—N4−174.1 (5)C12'—C13'—C14'—N4'177.6 (5)
C14—N4—C15—C16121.5 (6)C14'—N4'—C15'—C16'−115.0 (6)
C19—N4—C15—C16−57.3 (6)C19'—N4'—C15'—C16'58.3 (7)
N4—C15—C16—C1757.2 (7)N4'—C15'—C16'—C17'−55.0 (7)
C15—C16—C17—C18−57.4 (7)C15'—C16'—C17'—C18'53.9 (7)
C16—C17—C18—C1955.7 (7)C16'—C17'—C18'—C19'−55.8 (7)
C14—N4—C19—C18−123.2 (6)C14'—N4'—C19'—C18'114.3 (6)
C15—N4—C19—C1855.5 (7)C15'—N4'—C19'—C18'−58.9 (7)
C17—C18—C19—N4−53.5 (7)C17'—C18'—C19'—N4'57.2 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13'—H13'···N2i0.952.493.324 (8)147
C14—H14···N1'0.952.583.498 (8)161
C14'—H14'···N1ii0.952.613.484 (8)153
C16'—H16D···N2ii0.992.553.477 (8)156
C19—H19A···N2'iii0.992.603.568 (8)166

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x−1, −y+3/2, z−1/2; (iii) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG3141).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bock, H., Nick, S., Seitz, W., Nather, C. & Bats, J. W. (1996). Z. Naturforsch. Teil B Chem. Sci.51, 153–171.
  • Bruker (2005). APEX2 (Version 2.0-2) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633–o637. [PubMed]
  • Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64 Submitted.
  • Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem.14, 1321–1330.
  • Marder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc.115, 2524–2526.
  • Reck, G. & Dahne, L. (2006). Private communication (refcode NEQHAT01). CCDC, Union Road, Cambridge, England.
  • Sheldrick, G. M. (2003). SADABS Version 2.08. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography