PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o372–o373.
Published online 2008 January 4. doi:  10.1107/S1600536807068109
PMCID: PMC2960374

10-Methyl-9-(2-nitro­phenoxy­carbon­yl)acridinium trifluoro­methane­sulfonate

Abstract

The crystal structure of the title compound, C21H15N2O4 +·CF3O3S, is stabilized by C—H(...)O and C—H(...)F hydrogen bonds, by C—F(...)π, N—O(...)π and S—O(...)π inter­actions, and by O(...)O [2.70 (4) Å] and O(...)F [2.85 (1) or 2.92 (1) Å] contacts; π–π interactions are also present. In the packing of the mol­ecules, acridine units are either parallel or inclined at an angle of 12.5 (1)°. The nitrophenoxycarbonyl unit is disordered over two position; the site occupancy factors are 0.89 and 0.11.

Related literature

For general background, see: Adamczyk et al. (2004 [triangle]); Becker et al. (1999 [triangle]); Rak et al. (1999 [triangle]); Razavi & McCapra (2000a [triangle],b [triangle]); Roda et al. (2003 [triangle]); Zomer & Jacquemijns (2001 [triangle]). For related structures, see: Bianchi et al. (2004 [triangle]); Butcher et al. (2004 [triangle]); Dorn et al. (2005 [triangle]); Hunter & Sanders (1990 [triangle]); Kaafarani et al. (2003 [triangle]); Lyssenko & Anti­pin (2004 [triangle]); Sato (1996 [triangle]); Sikorski et al. (2007 [triangle]); Sridhar et al. (2006 [triangle]); Steiner (1999 [triangle]). For analysis of inter­molecular inter­actions, see: Spek (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o372-scheme1.jpg

Experimental

Crystal data

  • C21H15N2O4 +·CF3O3S
  • M r = 508.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o372-efi17.jpg
  • a = 12.459 (4) Å
  • b = 21.361 (6) Å
  • c = 8.123 (3) Å
  • β = 108.42 (3)°
  • V = 2051.1 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 100 (2) K
  • 0.40 × 0.10 × 0.02 mm

Data collection

  • Kuma KM-4 CCD κ-geometry diffractometer
  • Absorption correction: none
  • 22835 measured reflections
  • 3671 independent reflections
  • 2959 reflections with I > 2σ(I)
  • R int = 0.079

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.130
  • S = 1.20
  • 3671 reflections
  • 366 parameters
  • 21 restraints
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2003 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2003 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)
Table 2
C—F(...)π, N—O(...)π and S—O(...)π interactions (Å,°)
Table 3
π–π interactions (Å,°)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068109/xu2382sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068109/xu2382Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32) for the period 2007–2010.

supplementary crystallographic information

Comment

Phenyl 10-alkylacridinium-9-carboxylates are known to be chemiluminescent indicators or chemiluminogenic fragments of chemiluminescent labels, which have found numerous applications in assays of biologically and environmentally important entities (Becker et al., 1999; Adamczyk et al., 2004). The reaction of the above-mentioned cations with hydrogen peroxide in alkaline media produces light, and the determination of its intensity enables labeled entities or entities present in the medium to be assayed quantitatively, even at the attomole level (Roda et al., 2003). Investigations have revealed that oxidation of these cations is accompanied by the removal of the phenoxycarbonyl fragment and conversion of the rest of the molecule to electronically excited, light-emitting 10-alkyl-9-acridinones (Rak et al., 1999; Razavi & McCapra, 2000a,b; Zomer & Jacquemijns, 2001). It may thus be expected that the efficiency of chemiluminescence is affected by changes in the structure of the phenyl fragment. In order to find out whether this actually takes place, investigations were undertaken on phenyl 10-methylacridinium-9-carboxylates differently substituted in the phenyl fragment. Here, the crystal structure of the NO2-phenyl-substituted derivative is presented. The compound was synthesized and investigated since the strongly electron attracting NO2 group present in the phenyl fragment may be expected to substantially influence its stability and chemiluminogenic ability.

Parameters characterizing the geometry of the acridine ring are typical of acridine-based derivatives (Sikorski et al., 2007).

Cations are disordered within the nitrophenoxycarbonyl fragment and occupy two positions, with occupancy factors of 0.886 (4) and 0.114 (4) for C15/O16/O17/C18/C19/H19/C20/H20/C21/H21/C22/H22/C23/N24/O25/O26 and C15A/O16A/O17A/C18A/C19A/H19A/C20A/H20A/C21A/H21A/C22A/H22A/C23A/ N24A/O25A/O26A, respectively. The dihedral angles between the mean planes delineated by atoms C9/C15/O16/O17 and C9/C15A/O16A/O17A, C23/N24/O25/O26 and C23A/N24A/O25A/O26A, and C18—C23 and C18A—C23A are 47.4 (3)°, 42.2 (3)° and 12.8 (3)°, respectively. They reflect the mutual arrangement of the disordered structures. This is the first case of disorder to be reported in 9-(phenoxycarbonyl)-acridines or 9-(phenoxycarbonyl)-10-methylacridinium salts.

With respective average deviations from planarity of 0.027 and 0.009 Å or 0.033 Å, the acridine and benzene (C18—C23 or C18A—C23A) ring systems in the cation are oriented at 3.0 (1)° or 11.1 (4)° to each other (Fig. 1). The carboxyl group (C15/O16/O17 or C15A/O16A/O17A) is twisted at an angle of 65.8 (1)° or 113.0 (4)° relative to the acridine skeleton. The mean planes of the acridine moieties lie either parallel or are inclined at an angle of 12.5 (1)° in the lattice. The benzene rings are either parallel or inclined at an angle of 15.7 (1)° or 23.0 (4)°.

All the O and F atoms of the trifluoromethanesulfonate anions are involved in weak multidirectional C–H···O and C—H···F hydrogen bonds (Table 1 and Figs. 2 and 3), and C—F···π (phenyl), S—O···π (acridine) interactions (Table 2 and Figs. 2 and 3), as well as O···F contacts [O25···F35 = 2.85 (1) Å or O25A···F35A = 2.92 (4) Å (symmetry code: (vi) x + 1, y, z + 1); Figs. 2 and 4] with cations. The cations are involved in weak C—H···O (nitro) (Table 1 and Fig. 2). N—O (nitro)···π (phenyl) (Table 2 and Figs. 2, 3 and 4) and π-π (acridine) (Table 3 and Fig. 4) interactions, as well as O (carbonyl)···O (nitro) contacts [O17A···O25A = 2.70 (4) Å (symmetry code: (ii) x, -y + 3/2, z - 1/2); Fig. 2].

All the interactions demonstrated were found by PLATON (Spek, 2003). The C–H···O (Bianchi et al., 2004; Steiner, 1999) and C–H···F (Bianchi et al., 2004; Lyssenko & Antipin, 2004) interactions exhibit a hydrogen-bond-type nature. The C–F···π (phenyl) and S–O···π (acridine) interactions (Dorn et al., 2005), and also N–O (nitro)···F interactions, the latter identified as O···F contacts (Lyssenko & Antipin, 2004), should be of an attractive nature. Such an attractive nature is also exhibited by π-π interactions (Hunter & Sanders, 1990), N—O (nitro)···π (phenyl) (Kaafarani et al., 2003) interactions and O (carbonyl)···O (nitro) (Butcher et al., 2004) contacts have been disclosed in crystals of other compounds.

The crystal structure is stabilized by a network of the aforementioned short-range interactions, as well as by long-range electrostatic interactions between ions.

Experimental

9-(2-Nitrophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was synthesized by treating 2-nitrophenyl acridine-9-carboxylate [obtained in the same way as described elsewhere (Sato, 1996; Sikorski et al., 2007)], dissolved in anhydrous dichloromethane, with a fivefold molar excess of methyl trifluoromethanesulfonate, dissolved in the same solvent, under an Ar atmosphere at room temperature for 4 h. The crude salt was dissolved in small amount of ethanol, filtered and precipitated with 25 v/v excess of diethyl ether (yield 63%). Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H distances of 0.95 Å and with Uiso(H) = 1.2Ueq(C), or C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for the methyl group. The geometries of the disordered nitrophenoxycarbonyl fragment were refined anisotropically assuming C—C distances in the C18A—C23A benzene ring equal to 1.39 Å (Sridhar et al., 2006).

Figures

Fig. 1.
The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Cg1, Cg2, Cg3, Cg4 and Cg4 A denote the ring centroids. ...
Fig. 2.
The arrangement of the ions in the unit cell, viewed along the c axis. The O···F contacts, and C—H···O interactions are represented by dashed lines, and C—F···π, ...
Fig. 3.
The arrangement of the ions in the unit cell. The O···O contacts, and C—H···O and C—H···F interactions are represented by dashed lines and C—F···π ...
Fig. 4.
The arrangement of the ions in the unit cell, viewed approximately along the a axis. The O···F contacts are represented by dashed lines, and N–O···π and π-π interactions by ...

Crystal data

C21H15N2O4+·CF3O3SF000 = 1040
Mr = 508.42Dx = 1.646 Mg m3
Monoclinic, P21/cMelting point: 500-502 K K
Hall symbol: -P 2ybcMo Kα radiation λ = 0.71073 Å
a = 12.459 (4) ÅCell parameters from 22931 reflections
b = 21.361 (6) Åθ = 4.6–32.0º
c = 8.123 (3) ŵ = 0.24 mm1
β = 108.42 (3)ºT = 100 (2) K
V = 2051.1 (12) Å3Plate, yellow
Z = 40.40 × 0.10 × 0.02 mm

Data collection

Kuma KM4 CCD κ-geometry diffractometer2959 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
Monochromator: graphiteθmax = 25.3º
T = 100(2) Kθmin = 4.6º
ω scansh = −14→14
Absorption correction: nonek = −25→25
22835 measured reflectionsl = −9→9
3671 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.130  w = 1/[σ2(Fo2) + (0.0574P)2] where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
3671 reflectionsΔρmax = 0.27 e Å3
366 parametersΔρmin = −0.36 e Å3
21 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.5397 (2)0.49641 (14)0.8189 (4)0.0232 (7)
H10.60350.51340.90520.028*
C20.5215 (2)0.43405 (14)0.8152 (4)0.0244 (7)
H20.57360.40740.89540.029*
C30.4250 (2)0.40863 (14)0.6920 (4)0.0256 (7)
H30.41120.36490.69260.031*
C40.3514 (3)0.44534 (14)0.5727 (4)0.0270 (7)
H40.28610.42720.49230.032*
C50.2406 (3)0.64981 (14)0.3137 (4)0.0259 (7)
H50.18040.63120.22440.031*
C60.2548 (3)0.71290 (15)0.3180 (4)0.0270 (7)
H60.20430.73790.23070.032*
C70.3419 (3)0.74185 (14)0.4480 (4)0.0276 (7)
H70.34940.78610.44850.033*
C80.4158 (3)0.70724 (14)0.5734 (4)0.0259 (7)
H80.47500.72740.66080.031*
C90.4804 (2)0.60253 (14)0.6994 (4)0.0228 (7)
N100.30150 (19)0.54800 (11)0.4416 (3)0.0202 (6)
C110.4655 (2)0.53731 (14)0.6964 (3)0.0198 (7)
C120.3708 (2)0.51042 (13)0.5666 (3)0.0197 (7)
C130.4053 (2)0.64062 (14)0.5748 (3)0.0217 (7)
C140.3153 (2)0.61197 (14)0.4420 (4)0.0214 (7)
C150.5682 (3)0.63250 (16)0.8509 (5)0.0203 (8)0.886 (4)
O160.6746 (2)0.61632 (10)0.8552 (3)0.0228 (6)0.886 (4)
O170.54773 (18)0.66490 (10)0.9577 (3)0.0233 (6)0.886 (4)
C180.7648 (3)0.63594 (16)1.0013 (5)0.0214 (8)0.886 (4)
C190.8199 (4)0.5892 (2)1.1130 (6)0.0238 (11)0.886 (4)
H190.79510.54711.09130.029*0.886 (4)
C200.9110 (6)0.6034 (4)1.2562 (16)0.024 (3)0.886 (4)
H200.94880.57171.33520.028*0.886 (4)
C210.9461 (6)0.6656 (4)1.2820 (10)0.0287 (19)0.886 (4)
H211.00910.67571.38010.034*0.886 (4)
C220.8935 (5)0.7129 (3)1.1712 (8)0.0236 (16)0.886 (4)
H220.92020.75481.19000.028*0.886 (4)
C230.8005 (4)0.69750 (19)1.0318 (7)0.0237 (13)0.886 (4)
N240.7429 (3)0.74990 (16)0.9243 (5)0.0288 (8)0.886 (4)
O250.7664 (7)0.8028 (5)0.9836 (11)0.054 (3)0.886 (4)
O260.6766 (2)0.73880 (12)0.7809 (3)0.0415 (8)0.886 (4)
C15A0.612 (2)0.6275 (10)0.776 (3)0.016 (5)*0.114 (4)
O16A0.6247 (17)0.6231 (8)0.943 (3)0.022 (5)*0.114 (4)
O17A0.6748 (15)0.6451 (8)0.706 (2)0.026 (5)*0.114 (4)
C18A0.737 (2)0.6387 (8)1.058 (4)0.015 (7)*0.114 (4)
C19A0.801 (2)0.5901 (16)1.155 (4)0.022 (12)*0.114 (4)
H19A0.77530.54801.14090.027*0.114 (4)
C20A0.905 (4)0.607 (3)1.273 (13)0.04 (4)*0.114 (4)
H20A0.94030.57321.34640.053*0.114 (4)
C21A0.968 (3)0.662 (2)1.307 (6)0.000 (10)*0.114 (4)
H21A1.04230.66901.38190.000*0.114 (4)
C22A0.890 (3)0.703 (2)1.202 (5)0.000 (10)*0.114 (4)
H22A0.91250.74561.22480.000*0.114 (4)
C23A0.786 (3)0.6977 (13)1.071 (5)0.018 (13)*0.114 (4)
N24A0.718 (2)0.7556 (14)0.982 (4)0.020 (8)*0.114 (4)
O25A0.762 (3)0.802 (2)0.974 (5)0.000 (8)*0.114 (4)
O26A0.6136 (15)0.7479 (8)0.911 (2)0.027 (5)*0.114 (4)
C270.2090 (3)0.51967 (15)0.3011 (4)0.0317 (8)
H27A0.13770.52420.32710.047*
H27B0.22490.47510.29120.047*
H27C0.20270.54080.19140.047*
S280.15313 (6)0.90846 (3)0.25166 (9)0.0233 (2)
O290.11820 (19)0.95900 (10)0.1300 (3)0.0358 (6)
O300.23911 (17)0.92471 (11)0.4117 (3)0.0357 (6)
O310.16858 (18)0.84963 (10)0.1774 (3)0.0330 (6)
C320.0297 (3)0.89497 (15)0.3214 (4)0.0277 (7)
F330.00993 (15)0.94384 (9)0.4102 (2)0.0424 (5)
F340.04372 (16)0.84469 (9)0.4239 (2)0.0420 (5)
F35−0.06374 (14)0.88552 (9)0.1871 (2)0.0383 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0183 (16)0.0225 (17)0.0237 (16)−0.0010 (12)−0.0004 (13)−0.0002 (14)
C20.0232 (17)0.0199 (17)0.0269 (17)0.0035 (13)0.0037 (14)0.0013 (14)
C30.0242 (18)0.0209 (17)0.0296 (17)−0.0006 (13)0.0055 (15)−0.0024 (14)
C40.0269 (18)0.0261 (18)0.0244 (17)−0.0034 (14)0.0028 (14)−0.0041 (14)
C50.0242 (18)0.0297 (19)0.0185 (16)0.0031 (14)−0.0006 (13)0.0014 (14)
C60.0268 (18)0.0278 (18)0.0245 (17)0.0045 (14)0.0054 (14)0.0054 (15)
C70.0272 (18)0.0215 (17)0.0321 (18)0.0013 (14)0.0067 (15)0.0041 (15)
C80.0236 (17)0.0201 (17)0.0292 (17)−0.0014 (13)0.0014 (14)0.0014 (14)
C90.0226 (17)0.0209 (17)0.0229 (16)−0.0027 (13)0.0043 (13)0.0015 (14)
N100.0196 (13)0.0203 (13)0.0180 (13)0.0000 (10)0.0018 (11)−0.0008 (11)
C110.0180 (16)0.0235 (17)0.0188 (15)−0.0017 (12)0.0071 (13)−0.0028 (13)
C120.0185 (16)0.0221 (16)0.0189 (15)−0.0017 (12)0.0065 (13)−0.0024 (13)
C130.0191 (16)0.0253 (17)0.0204 (15)0.0002 (13)0.0057 (13)0.0024 (14)
C140.0215 (17)0.0241 (17)0.0201 (16)−0.0010 (13)0.0087 (13)0.0002 (14)
C150.022 (2)0.0167 (19)0.022 (2)0.0029 (15)0.0066 (19)0.0084 (17)
O160.0190 (14)0.0237 (13)0.0220 (14)0.0007 (10)0.0013 (12)−0.0028 (11)
O170.0247 (14)0.0191 (13)0.0240 (13)0.0000 (10)0.0048 (11)−0.0015 (11)
C180.017 (2)0.027 (2)0.021 (2)−0.0016 (15)0.0064 (18)−0.0052 (17)
C190.024 (2)0.022 (2)0.024 (2)0.0007 (16)0.006 (2)−0.0038 (18)
C200.023 (4)0.024 (4)0.024 (3)0.0065 (17)0.007 (3)0.002 (2)
C210.018 (3)0.040 (4)0.021 (3)0.003 (3)−0.005 (3)−0.002 (2)
C220.025 (3)0.021 (3)0.026 (3)−0.0035 (18)0.009 (2)0.002 (2)
C230.023 (2)0.021 (3)0.026 (3)0.0007 (15)0.006 (2)0.0054 (18)
N240.0216 (19)0.031 (2)0.029 (2)−0.0035 (15)0.0013 (18)0.0065 (17)
O250.052 (3)0.022 (2)0.074 (4)−0.0030 (15)0.001 (2)0.0051 (18)
O260.0337 (16)0.0399 (16)0.0378 (17)−0.0129 (12)−0.0075 (14)0.0188 (13)
C270.0317 (19)0.0291 (18)0.0226 (16)0.0004 (15)−0.0078 (14)0.0004 (15)
S280.0229 (4)0.0225 (4)0.0223 (4)−0.0002 (3)0.0039 (3)−0.0007 (3)
O290.0486 (15)0.0244 (12)0.0308 (12)−0.0008 (10)0.0075 (11)0.0056 (10)
O300.0236 (12)0.0456 (14)0.0315 (12)−0.0035 (10)−0.0004 (10)−0.0030 (11)
O310.0359 (14)0.0275 (12)0.0359 (13)0.0074 (10)0.0118 (11)−0.0043 (11)
C320.0272 (19)0.0307 (19)0.0198 (16)0.0020 (14)−0.0003 (14)−0.0047 (15)
F330.0330 (11)0.0523 (13)0.0413 (11)0.0043 (9)0.0112 (9)−0.0191 (10)
F340.0447 (12)0.0468 (13)0.0325 (11)−0.0133 (9)0.0095 (9)0.0070 (10)
F350.0232 (10)0.0496 (12)0.0348 (11)−0.0054 (8)−0.0012 (9)−0.0076 (9)

Geometric parameters (Å, °)

C1—C21.350 (4)C20—H200.9500
C1—C111.423 (4)C21—C221.374 (7)
C1—H10.9500C21—H210.9500
C2—C31.408 (4)C22—C231.380 (5)
C2—H20.9500C22—H220.9500
C3—C41.354 (4)C23—N241.461 (6)
C3—H30.9500N24—O261.219 (4)
C4—C121.415 (4)N24—O251.227 (10)
C4—H40.9500C15A—O17A1.17 (3)
C5—C61.358 (4)C15A—O16A1.31 (3)
C5—C141.411 (4)O16A—C18A1.46 (3)
C5—H50.9500C18A—C19A1.390 (8)
C6—C71.396 (4)C18A—C23A1.390 (8)
C6—H60.9500C19A—C20A1.390 (8)
C7—C81.356 (4)C19A—H19A0.9500
C7—H70.9500C20A—C21A1.390 (8)
C8—C131.430 (4)C20A—H20A0.9500
C8—H80.9500C21A—C22A1.390 (8)
C9—C131.401 (4)C21A—H21A0.9500
C9—C111.405 (4)C22A—C23A1.390 (8)
C9—C151.506 (5)C22A—H22A0.9500
C9—C15A1.65 (3)C23A—N24A1.54 (5)
N10—C121.366 (4)N24A—O25A1.13 (6)
N10—C141.377 (4)N24A—O26A1.26 (3)
N10—C271.472 (4)C27—H27A0.9800
C11—C121.431 (4)C27—H27B0.9800
C13—C141.426 (4)C27—H27C0.9800
C15—O171.199 (4)S28—O311.433 (2)
C15—O161.361 (5)S28—O291.435 (2)
O16—C181.415 (4)S28—O301.441 (2)
C18—C191.378 (5)S28—C321.821 (3)
C18—C231.385 (5)C32—F351.335 (3)
C19—C201.378 (6)C32—F331.336 (3)
C19—H190.9500C32—F341.336 (4)
C20—C211.393 (6)
C2—C1—C11121.5 (3)C21—C20—H20120.9
C2—C1—H1119.2C22—C21—C20122.7 (7)
C11—C1—H1119.2C22—C21—H21118.7
C1—C2—C3119.8 (3)C20—C21—H21118.7
C1—C2—H2120.1C21—C22—C23117.8 (6)
C3—C2—H2120.1C21—C22—H22121.1
C4—C3—C2121.2 (3)C23—C22—H22121.1
C4—C3—H3119.4C22—C23—C18120.8 (5)
C2—C3—H3119.4C22—C23—N24115.8 (4)
C3—C4—C12120.6 (3)C18—C23—N24123.4 (4)
C3—C4—H4119.7O26—N24—O25124.0 (5)
C12—C4—H4119.7O26—N24—C23118.6 (3)
C6—C5—C14119.9 (3)O25—N24—C23117.3 (5)
C6—C5—H5120.0O17A—C15A—O16A130 (3)
C14—C5—H5120.0O17A—C15A—C9131 (2)
C5—C6—C7121.5 (3)O16A—C15A—C998.7 (19)
C5—C6—H6119.2C15A—O16A—C18A115 (2)
C7—C6—H6119.2C19A—C18A—C23A118 (3)
C8—C7—C6120.5 (3)C19A—C18A—O16A117 (2)
C8—C7—H7119.7C23A—C18A—O16A125 (2)
C6—C7—H7119.7C18A—C19A—C20A116 (4)
C7—C8—C13120.4 (3)C18A—C19A—H19A122.0
C7—C8—H8119.8C20A—C19A—H19A122.0
C13—C8—H8119.8C19A—C20A—C21A134 (6)
C13—C9—C11120.6 (3)C19A—C20A—H20A112.9
C13—C9—C15119.3 (3)C21A—C20A—H20A112.9
C11—C9—C15119.6 (3)C22A—C21A—C20A100 (5)
C13—C9—C15A116.3 (9)C22A—C21A—H21A130.0
C11—C9—C15A116.0 (9)C20A—C21A—H21A130.0
C12—N10—C14122.2 (2)C23A—C22A—C21A136 (4)
C12—N10—C27119.4 (2)C23A—C22A—H22A112.2
C14—N10—C27118.4 (2)C21A—C22A—H22A112.2
C9—C11—C1122.9 (3)C22A—C23A—C18A114 (3)
C9—C11—C12119.0 (3)C22A—C23A—N24A122 (3)
C1—C11—C12118.1 (3)C18A—C23A—N24A122 (3)
N10—C12—C4121.9 (3)O25A—N24A—O26A122 (3)
N10—C12—C11119.5 (3)O25A—N24A—C23A121 (3)
C4—C12—C11118.6 (3)O26A—N24A—C23A117 (2)
C9—C13—C14118.9 (3)N10—C27—H27A109.5
C9—C13—C8122.8 (3)N10—C27—H27B109.5
C14—C13—C8118.2 (3)H27A—C27—H27B109.5
N10—C14—C5120.9 (3)N10—C27—H27C109.5
N10—C14—C13119.7 (3)H27A—C27—H27C109.5
C5—C14—C13119.4 (3)H27B—C27—H27C109.5
O17—C15—O16123.8 (3)O31—S28—O29114.95 (13)
O17—C15—C9124.8 (3)O31—S28—O30115.49 (13)
O16—C15—C9111.3 (3)O29—S28—O30114.64 (14)
C15—O16—C18117.1 (3)O31—S28—C32103.36 (14)
C19—C18—C23120.4 (4)O29—S28—C32103.35 (14)
C19—C18—O16115.8 (3)O30—S28—C32102.57 (13)
C23—C18—O16123.8 (3)F35—C32—F33107.3 (2)
C20—C19—C18120.1 (5)F35—C32—F34107.2 (3)
C20—C19—H19119.9F33—C32—F34107.5 (2)
C18—C19—H19119.9F35—C32—S28112.0 (2)
C19—C20—C21118.2 (6)F33—C32—S28111.3 (2)
C19—C20—H20120.9F34—C32—S28111.4 (2)
C11—C1—C2—C3−2.3 (4)C15—O16—C18—C23−71.5 (5)
C1—C2—C3—C42.2 (4)C23—C18—C19—C200.1 (10)
C2—C3—C4—C121.2 (4)O16—C18—C19—C20178.1 (8)
C14—C5—C6—C7−0.4 (4)C18—C19—C20—C21−1.1 (15)
C5—C6—C7—C80.6 (4)C19—C20—C21—C220.3 (17)
C6—C7—C8—C13−0.3 (4)C20—C21—C22—C231.6 (13)
C13—C9—C11—C1179.5 (3)C21—C22—C23—C18−2.6 (10)
C15—C9—C11—C1−8.7 (4)C21—C22—C23—N24176.1 (6)
C15A—C9—C11—C130.1 (10)C19—C18—C23—C221.9 (9)
C13—C9—C11—C12−1.5 (4)O16—C18—C23—C22−175.9 (5)
C15—C9—C11—C12170.4 (3)C19—C18—C23—N24−176.8 (5)
C15A—C9—C11—C12−150.9 (10)O16—C18—C23—N245.4 (8)
C2—C1—C11—C9178.3 (3)C22—C23—N24—O26164.5 (5)
C2—C1—C11—C12−0.7 (4)C18—C23—N24—O26−16.8 (8)
C14—N10—C12—C4175.3 (3)C22—C23—N24—O25−14.1 (9)
C27—N10—C12—C4−4.8 (4)C18—C23—N24—O25164.6 (6)
C14—N10—C12—C11−4.1 (4)C13—C9—C15A—O17A−50 (3)
C27—N10—C12—C11175.7 (2)C11—C9—C15A—O17A101 (3)
C3—C4—C12—N10176.2 (3)C15—C9—C15A—O17A−154 (4)
C3—C4—C12—C11−4.3 (4)C13—C9—C15A—O16A128.8 (13)
C9—C11—C12—N104.4 (4)C11—C9—C15A—O16A−80.5 (16)
C1—C11—C12—N10−176.5 (2)C15—C9—C15A—O16A24.6 (10)
C9—C11—C12—C4−175.1 (3)O17A—C15A—O16A—C18A−4(4)
C1—C11—C12—C44.0 (4)C9—C15A—O16A—C18A176.8 (14)
C11—C9—C13—C14−1.7 (4)C15A—O16A—C18A—C19A−112 (3)
C15—C9—C13—C14−173.6 (3)C15A—O16A—C18A—C23A65 (4)
C15A—C9—C13—C14147.6 (10)C23A—C18A—C19A—C20A7(7)
C11—C9—C13—C8179.1 (3)O16A—C18A—C19A—C20A−175 (6)
C15—C9—C13—C87.3 (4)C18A—C19A—C20A—C21A−8(14)
C15A—C9—C13—C8−31.5 (10)C19A—C20A—C21A—C22A8(13)
C7—C8—C13—C9178.9 (3)C20A—C21A—C22A—C23A−11 (9)
C7—C8—C13—C14−0.3 (4)C21A—C22A—C23A—C18A13 (8)
C12—N10—C14—C5−178.3 (2)C21A—C22A—C23A—N24A178 (5)
C27—N10—C14—C51.8 (4)C19A—C18A—C23A—C22A−9(5)
C12—N10—C14—C130.9 (4)O16A—C18A—C23A—C22A174 (3)
C27—N10—C14—C13−178.9 (2)C19A—C18A—C23A—N24A−174 (3)
C6—C5—C14—N10179.1 (3)O16A—C18A—C23A—N24A9(5)
C6—C5—C14—C13−0.2 (4)C22A—C23A—N24A—O25A27 (6)
C9—C13—C14—N102.0 (4)C18A—C23A—N24A—O25A−169 (4)
C8—C13—C14—N10−178.7 (2)C22A—C23A—N24A—O26A−157 (4)
C9—C13—C14—C5−178.7 (3)C18A—C23A—N24A—O26A7(5)
C8—C13—C14—C50.5 (4)O31—S28—C32—F35−66.2 (2)
C13—C9—C15—O1761.8 (4)O29—S28—C32—F3553.9 (2)
C11—C9—C15—O17−110.2 (4)O30—S28—C32—F35173.4 (2)
C15A—C9—C15—O17156.3 (16)O31—S28—C32—F33173.78 (19)
C13—C9—C15—O16−120.4 (3)O29—S28—C32—F33−66.1 (2)
C11—C9—C15—O1667.6 (4)O30—S28—C32—F3353.4 (2)
C15A—C9—C15—O16−25.9 (15)O31—S28—C32—F3453.8 (2)
O17—C15—O16—C184.3 (5)O29—S28—C32—F34173.94 (19)
C9—C15—O16—C18−173.5 (3)O30—S28—C32—F34−66.6 (2)
C15—O16—C18—C19110.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O30i0.952.393.111 (4)132
C3—H3···O25i0.952.593.268 (10)129
C5—H5···F34ii0.952.553.339 (4)141
C6—H6···O310.952.443.196 (4)136
C20—H20···O29i0.952.593.273 (9)129
C27—H27A···O29iii0.982.573.246 (4)126
C27—H27C···O30ii0.982.563.508 (4)162

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, −y+3/2, z−1/2; (iii) x, −y+3/2, z+1/2.

Table 2 C-F···π and S-O···π interactions (Å,°).

XIJI···JX···JX-I···J
C32F33Cg4iv3.690 (4)4.002 (5)93.6 (2)
C32F33Cg4Aiv3.949 (18)4.31 (2)96.6 (3)
C32F34Cg4iv3.356 (4)4.002 (5)109.3 (2)
C32F34Cg4Aiv3.663 (18)4.31 (2)110.3 (3)
N24O25Cg4ii3.443 (9)3.710 (5)92.7 (5)
N24O25Cg4Aii3.13 (2)3.45 (2)94.8 (6)
N24AO25ACg4ii3.41 (4)4.19 (3)126 (3)
N24AO25ACg4Aii3.10 (4)3.91 (3)128 (3)
S28O30Cg1ii3.810 (3)3.707 (2)74.9 (1)
S28O31Cg1ii3.529 (3)3.707 (2)85.6 (1)
S28O31Cg3ii3.205 (3)4.221 (2)126.7 (1)

Symmetry codes: (ii) x, -y+3/2, z-1/2; (iv) x-1, -y+3/2, z-1/2.Notes: Cg represents the centre of gravity of the rings, as follows: Cg1 ring C9/C11/C12/N10/C14/C13, Cg3 ring C5-C8/C13/C14, Cg4 ring C18-C23 and Cg4A ring C18A-C23A.

Table 3 π-π interactions (Å,°).

CgICgJCg···CgDihedral angleInterplanar distanceOffset
12v3.547 (2)3.43.504 (3)0.556 (3)
22v3.981 (2)0.03.504 (3)1.891 (3)

Symmetry codes: (v) -x+1, -y+1, -z+1.Notes: Cg represents the centre of gravity of the rings, as follows: Cg1 ring C9/C11/C12/N10/C14/C13 and Cg2 ring C1-C4/C12/C11. Cg···Cg is the distance between ring centroids. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2382).

References

  • Adamczyk, M., Fino, J. R., Mattingly, P. G., Moore, J. A. & Pan, Y. (2004). Bioorg. Med. Chem. Lett.14, 2313–2317. [PubMed]
  • Becker, M., Lerum, V., Dickson, S., Nelson, N. C. & Matsuda, E. (1999). Biochemistry, 38, 5601–5611. [PubMed]
  • Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. [PubMed]
  • Butcher, R. J., Evans, R. & Gilardi, R. (2004). Acta Cryst. E60, o1376–o1378.
  • Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.
  • Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc.112, 5525–5534.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Kaafarani, B. R., Wex, B., Oliver, A. G., Krause Bauer, J. A. & Neckers, D. C. (2003). Acta Cryst. E59, o227–o229.
  • Lyssenko, K. A. & Antipin, M. Y. (2004). Russ. Chem. Bull. Int. Ed.53, 10–17.
  • Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED Version 1.171. Oxford Diffraction Ltd, Wrocław, Poland.
  • Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem.64, 3002–3008. [PubMed]
  • Razavi, Z. & McCapra, F. (2000a). Luminescence, 15, 239–245. [PubMed]
  • Razavi, Z. & McCapra, F. (2000b). Luminescence, 15, 245–249. [PubMed]
  • Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem.A75, 462–470.
  • Sato, N. (1996). Tetrahedron Lett.37, 8519–8522.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484–o4485.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, o687–o690. [PubMed]
  • Steiner, T. (1999). Chem. Commun. pp. 313–314.
  • Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography