PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m299.
Published online 2008 January 4. doi:  10.1107/S1600536807067736
PMCID: PMC2960372

Poly[aqua­[μ-4-(4-chloro­phen­yl)-2-thioxo-2,3-dihydro­thia­zol-3-olato]­sodium(I)]

Abstract

The packing of the title compound, [Na(C9H5ClNOS2)(H2O)]n, in the crystal structure occurs by pairwise attachment of +sc- and −sc-arranged 4-(4-chloro­phen­yl)-2-thioxo-2,3-dihydro­thia­zol-3-olate subunits via S to sodium. Water mol­ecules that are bound in the axial position of the distorted octa­hedral coordination octahedron give rise to a stereogenic center at sodium.

Related literature

For related literature, see: Allen et al. (1987 [triangle]); Hartung et al. (1996 [triangle], 1999 [triangle], 2007 [triangle]); Nardelli (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m299-scheme1.jpg

Experimental

Crystal data

  • [Na(C9H5ClNOS2)(H2O)]
  • M r = 283.72
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m299-efi1.jpg
  • a = 39.264 (5) Å
  • b = 4.168 (1) Å
  • c = 7.097 (1) Å
  • V = 1161.4 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.71 mm−1
  • T = 300 (2) K
  • 0.60 × 0.28 × 0.02 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.677, T max = 0.986
  • 5052 measured reflections
  • 2288 independent reflections
  • 1860 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.081
  • wR(F 2) = 0.173
  • S = 1.20
  • 2288 reflections
  • 151 parameters
  • 10 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.83 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1009 Friedel pairs
  • Flack parameter: 0.1 (2)

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]) and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067736/sj2452sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067736/sj2452Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Neutralization of 4(4-chlorophenyl)-3-hydroxythiazole-2(3H)-thione (Hartung et al., 1999) with sodium hydroxide in CH3OH furnishes sodium 4-(4-chlorophenyl)-2-thiooxo-2,3-dihydrothiazole-3-olate. The compound crystallizes as monohydrate, (I), from a saturated solution of CH3CN/hexane as yellowish prisms. The compound was investigated by X-ray diffraction in order to explore the structural chemistry of an alkali metal thiohydroxamate. The results of the study are summarized in the following section.

Fundamental differences between heterocyclic subunits of sodium 4-(4-chlorophenyl)-2-thiooxo-2,3-dihydrothiazole-3-olate monohydrate, (I) (Fig. 1), and the parent acid, i.e., 4(4-chlorophenyl)-3-hydroxythiazole-2(3H)-thione (Hartung et al., 1999) originate from a shortening of the N3—O3 distance from 1.379 (2) Å to 1.329 (8) Å and a lengthening of C2—S2 from 1.684 (2) Å to 1.699 (8) Å. The N3—O1 distance in (I) is closer to values reported for heterocyclic N– oxides than for thiohydroxamic acids (Hartung et al., 1996, 1999, 2007). The C2—S2 bond length lies in between typical values of C—S single and double bonds (Allen et al., 1987, Hartung et al., 1999). The distance C2—N3 [1.33 (1) Å] in sodium salt (I) agrees with the corresponding bond length of 4(4-chlorophenyl)-3-hydroxythiazole-2(3H)-thione (Hartung et al., 1999).

The parameters of the thiohydroxamate functional group in (I) are distinctively different from distances reported for 4(4-chlorophenyl)-3-isopropoxy-thiazole-2(3H)-thione [N3—O1 = 1.369 (3) Å, C2—S2 = 1.658 (3) Å, C2—N3 = 1.353 (3) Å] and further N-alkoxy derivatives thereof (Hartung et al., 1999). One possible explanation for this finding is associated with a significant contribution of the N-oxidothiolato formulae for the description of ground state properties of (I) apart from the well established thione resonance formulae. Support for this argumentation comes from sodium atom positioning in the unit cell of (I). The proximity to the metal is in line with 4-(4-chlorophenyl)-2-thiooxo-2,3-dihydrothiazole-3-olate binding as monodentate S-donor ligand to sodium [Na1—S1 = 3.001 (4) Å, S2—Na1A= 2.998 (4) Å, S2—Na1B = 2.958 (4) Å, S2—Na1A = 2.961 (4) Å]. The N-oxide oxygen atom O1 forms hydrogen bonds toward the hydrate water that is attached at either side of the apex of a octahedrally distorted coordination polyhedron at sodium [N3—O1···H2 = 162.2 (3) °, O1···O2A = 2.770 (4) Å] (Figure 2). O1 therefore does not participate in a chelate type of interaction with the metal atom [Na1···O1 = 3.855 (5) A].

The p-chlorophenyl substituent is characterized by two different arrangements with respect to the heterocyclic core, i.e. positive (+) and negative (-) synclinal [N3—C4—C6—C7 = ± 42 (1) °]. The sodium atom is offset from the heterocyclic plane by Na1—S2—C2—N3 = 53.9 (8) °. A pairwise +sc and –sc arrangement of 4-(4-chlorophenyl)-2-thiooxo-2,3-dihydrothiazole-3-olate entities in the equatorial plane in association with a non linearity of the O2—Na1—O2A axis [162.1 (3) °] gives rise to a stereogenic center at sodium (Fig. 2). Chirality thus originates from the packing of individual components of (I) in the solid state.

Experimental

Sodium hydroxide (40.0 mg, 1.00 mmol, 1 equiv) was added to a solution of 4-(4-chlorphenyl)-3-hydroxythiazol-2(3H)-thione (244 mg, 1.00 mmol) in CH3OH (5 ml) at 294 K. The reaction mixture was stirred at this temperature for 1.5 h. The volatiles were subsequently removed to afford a yellowish powder. The material was freeze-dried and subsequently dissolved in CH3CN/hexane [1/1 (v/v)]. Yellowish prisms suitable for X-ray diffraction were grown by slowly allowing the solvent to evaporate at 293 K. Analysis calculated for C9H7ClNNaO2S2 (283.7 g/mol): C 38.10, H 2.49, N 4.94%; found C 38.15, H 2.39, N 4.92%; 1H NMR (400 MHz, DMSO, p.p.m.): 7.06 (s, 1 H), 7.44 (d, J = 8.52 Hz, 2 H), 8.01 (d, J = 8.52 Hz, 2 H); 13C (150 MHz, DMSO, p.p.m.): 104.5, 127.9, 129.5, 130.3, 132.8, 142.0, 162.2.

Refinement

All H Atoms were positioned geometrically and treated as riding atoms (C—H = 0.93 Å), with Uiso(H)=1.2 Ueq(C) except H2A and H2B. The latter H atoms were located in a difference Fourier map and were refined with restrained geometry (Nardelli, 1999). The O—H distance was restained to 0.85 (6)Å and H···H distances were restained to 1.365Å thus leading to an angle of 107 Å.

Figures

Fig. 1.
Molecular structure of (I). Displacement ellipsoids are plotted at the 50% probability level.
Fig. 2.
Packing and hydrogen bonding (dashed lines) of (I) in the solid state. S atoms are depicted in yellow, Cl in green, O in red, N in blue, and Na in gray).

Crystal data

[Na(C9H5ClNOS2)(H2O)]F000 = 576
Mr = 283.72Dx = 1.623 Mg m3
Orthorhombic, Pca21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1313 reflections
a = 39.264 (5) Åθ = 2.1–23.1º
b = 4.168 (1) ŵ = 0.71 mm1
c = 7.097 (1) ÅT = 300 (2) K
V = 1161.4 (4) Å3Prism, light yellow
Z = 40.60 × 0.28 × 0.02 mm

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD detector diffractometer2288 independent reflections
Radiation source: Enhance (Mo) X-ray Source1860 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.036
Detector resolution: 8.4012 pixels mm-1θmax = 26.4º
T = 300(2) Kθmin = 3.1º
Rotation method data acquisition using ω and [var phi] scansh = −47→48
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007)k = −2→5
Tmin = 0.677, Tmax = 0.986l = −8→8
5052 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.081  w = 1/[σ2(Fo2) + 10.6487P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.173(Δ/σ)max = 0.069
S = 1.20Δρmax = 0.61 e Å3
2288 reflectionsΔρmin = −0.83 e Å3
151 parametersExtinction correction: none
10 restraintsAbsolute structure: Flack (1983), 1009 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.1 (2)
Secondary atom site location: difference Fourier map

Special details

Experimental. empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm]
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C2−0.1784 (2)−0.0666 (19)0.0522 (12)0.0262 (19)
C4−0.1251 (2)0.049 (2)0.1720 (12)0.028 (2)
C5−0.1183 (3)0.058 (3)−0.0110 (13)0.049 (3)
H5−0.09690.1047−0.06020.059*
C6−0.1010 (2)0.136 (2)0.3269 (12)0.030 (2)
C7−0.0672 (2)0.018 (3)0.3149 (14)0.041 (3)
H7−0.0608−0.12450.22020.049*
C8−0.0438 (2)0.122 (3)0.4503 (16)0.043 (3)
H8−0.02110.05920.44190.051*
C9−0.0540 (2)0.314 (3)0.5942 (14)0.038 (3)
C10−0.0872 (2)0.429 (2)0.6068 (15)0.037 (2)
H10−0.09360.56770.70310.044*
C11−0.1107 (2)0.330 (2)0.4701 (12)0.030 (2)
H11−0.13320.39730.47810.036*
N3−0.15955 (17)−0.031 (2)0.2072 (9)0.0271 (18)
O1−0.17113 (14)−0.0646 (14)0.3820 (7)0.0230 (13)
O2−0.28942 (14)0.4205 (16)−0.0027 (9)0.0314 (15)
H2A−0.302 (2)0.266 (16)−0.047 (12)0.038*
H2B−0.299 (2)0.587 (15)−0.058 (12)0.038*
S1−0.15330 (7)−0.0274 (8)−0.1467 (3)0.0431 (7)
S2−0.22082 (5)−0.1443 (5)0.0407 (3)0.0271 (4)
Cl1−0.02523 (8)0.4352 (8)0.7662 (5)0.0758 (11)
Na1−0.25584 (8)0.3625 (9)0.2703 (5)0.0320 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.034 (4)0.021 (5)0.023 (4)−0.004 (3)0.002 (4)0.015 (5)
C40.030 (4)0.022 (5)0.033 (5)−0.001 (4)0.006 (3)0.024 (4)
C50.042 (6)0.076 (9)0.031 (5)−0.010 (6)0.009 (4)−0.007 (6)
C60.030 (4)0.023 (5)0.037 (5)−0.004 (4)−0.001 (4)−0.002 (4)
C70.037 (5)0.041 (6)0.045 (7)−0.004 (5)0.003 (4)−0.005 (5)
C80.027 (5)0.034 (6)0.067 (7)−0.005 (5)−0.005 (5)0.010 (6)
C90.033 (5)0.032 (6)0.050 (7)−0.008 (5)−0.016 (4)0.022 (5)
C100.044 (6)0.028 (6)0.039 (5)−0.004 (5)−0.003 (4)−0.003 (4)
C110.031 (5)0.024 (5)0.034 (5)−0.002 (4)0.002 (4)0.000 (4)
N30.021 (3)0.035 (5)0.026 (4)0.006 (3)0.001 (3)0.007 (4)
O10.032 (3)0.018 (3)0.018 (3)−0.002 (3)0.006 (2)0.000 (3)
O20.025 (3)0.032 (4)0.037 (4)0.005 (3)−0.008 (3)0.003 (3)
S10.0447 (14)0.0600 (19)0.0245 (11)−0.0061 (14)0.0058 (11)0.0009 (15)
S20.0295 (10)0.0234 (10)0.0283 (10)−0.0021 (9)−0.0025 (10)0.0016 (12)
Cl10.070 (2)0.061 (2)0.097 (3)−0.0061 (17)−0.048 (2)−0.006 (2)
Na10.037 (2)0.0337 (18)0.0253 (17)0.0020 (17)−0.0014 (16)0.0000 (19)

Geometric parameters (Å, °)

C2—N31.334 (10)C11—H110.9300
C2—S21.699 (8)N3—O11.329 (8)
C2—S11.729 (9)O2—Na12.356 (7)
C4—C51.326 (13)O2—Na1i2.411 (7)
C4—N31.415 (10)O2—H2A0.88 (5)
C4—C61.495 (12)O2—H2B0.89 (5)
C5—S11.716 (10)S2—Na1ii2.958 (4)
C5—H50.9300S2—Na1iii2.961 (4)
C6—C111.352 (12)S2—Na1i2.998 (4)
C6—C71.420 (12)S2—Na13.001 (4)
C7—C81.398 (13)Na1—O2iv2.411 (7)
C7—H70.9300Na1—S2v2.958 (4)
C8—C91.359 (14)Na1—S2vi2.961 (4)
C8—H80.9300Na1—S2iv2.998 (4)
C9—C101.389 (13)Na1—Na1i3.5780 (10)
C9—Cl11.738 (9)Na1—Na1iv3.5780 (10)
C10—C111.402 (12)Na1—Na1vi4.1680 (10)
C10—H100.9300Na1—Na1iii4.1680 (10)
N3—C2—S2127.2 (6)Na1i—S2—Na173.23 (9)
N3—C2—S1110.3 (6)O2—Na1—O2iv162.1 (3)
S2—C2—S1122.5 (5)O2—Na1—S2v106.8 (2)
C5—C4—N3111.8 (9)O2iv—Na1—S2v74.03 (18)
C5—C4—C6125.8 (8)O2—Na1—S2vi74.71 (19)
N3—C4—C6122.1 (7)O2iv—Na1—S2vi87.46 (18)
C4—C5—S1112.5 (8)S2v—Na1—S2vi91.06 (13)
C4—C5—H5123.8O2—Na1—S2iv115.3 (2)
S1—C5—H5123.8O2iv—Na1—S2iv82.42 (17)
C11—C6—C7121.1 (8)S2v—Na1—S2iv88.82 (11)
C11—C6—C4121.3 (8)S2vi—Na1—S2iv169.51 (13)
C7—C6—C4117.6 (8)O2—Na1—S283.24 (19)
C8—C7—C6117.7 (9)O2iv—Na1—S295.48 (18)
C8—C7—H7121.2S2v—Na1—S2169.51 (13)
C6—C7—H7121.2S2vi—Na1—S288.70 (11)
C9—C8—C7120.4 (9)S2iv—Na1—S289.52 (12)
C9—C8—H8119.8O2—Na1—Na1i41.94 (16)
C7—C8—H8119.8O2iv—Na1—Na1i124.6 (2)
C8—C9—C10121.9 (9)S2v—Na1—Na1i133.11 (9)
C8—C9—Cl1120.4 (8)S2vi—Na1—Na1i52.77 (9)
C10—C9—Cl1117.7 (9)S2iv—Na1—Na1i132.39 (9)
C9—C10—C11118.1 (10)S2—Na1—Na1i53.34 (9)
C9—C10—H10120.9O2—Na1—Na1iv152.5 (2)
C11—C10—H10120.9O2iv—Na1—Na1iv40.77 (15)
C6—C11—C10120.7 (9)S2v—Na1—Na1iv52.85 (8)
C6—C11—H11119.6S2vi—Na1—Na1iv119.08 (11)
C10—C11—H11119.7S2iv—Na1—Na1iv53.43 (8)
O1—N3—C2124.6 (7)S2—Na1—Na1iv118.65 (11)
O1—N3—C4121.1 (6)Na1i—Na1—Na1iv165.3 (2)
C2—N3—C4114.2 (7)O2—Na1—Na1vi84.11 (18)
Na1—O2—Na1i97.3 (2)O2iv—Na1—Na1vi84.24 (18)
Na1—O2—H2A123 (6)S2v—Na1—Na1vi45.98 (8)
Na1i—O2—H2A97 (6)S2vi—Na1—Na1vi46.04 (8)
Na1—O2—H2B134 (6)S2iv—Na1—Na1vi134.80 (8)
Na1i—O2—H2B96 (6)S2—Na1—Na1vi134.74 (8)
H2A—O2—H2B100 (6)Na1i—Na1—Na1vi90.0
C5—S1—C291.0 (4)Na1iv—Na1—Na1vi90.0
C2—S2—Na1ii117.9 (3)O2—Na1—Na1iii95.89 (18)
C2—S2—Na1iii124.2 (3)O2iv—Na1—Na1iii95.76 (18)
Na1ii—S2—Na1iii74.38 (9)S2v—Na1—Na1iii134.02 (8)
C2—S2—Na1i101.3 (3)S2vi—Na1—Na1iii133.96 (8)
Na1ii—S2—Na1i88.82 (11)S2iv—Na1—Na1iii45.20 (8)
Na1iii—S2—Na1i134.38 (7)S2—Na1—Na1iii45.26 (8)
C2—S2—Na1106.8 (3)Na1i—Na1—Na1iii90.0
Na1ii—S2—Na1134.38 (7)Na1iv—Na1—Na1iii90.0
Na1iii—S2—Na188.70 (11)Na1vi—Na1—Na1iii180.000 (1)
N3—C4—C5—S10.3 (14)Na1i—O2—Na1—S2−39.9 (2)
C6—C4—C5—S1−174.8 (8)Na1i—O2—Na1—Na1iv175.14 (18)
C5—C4—C6—C11133.0 (12)Na1i—O2—Na1—Na1vi96.6 (2)
N3—C4—C6—C11−41.7 (13)Na1i—O2—Na1—Na1iii−83.4 (2)
C5—C4—C6—C7−45.0 (15)C2—S2—Na1—O2129.3 (3)
N3—C4—C6—C7140.3 (10)Na1ii—S2—Na1—O2−38.8 (3)
C11—C6—C7—C8−3.5 (15)Na1iii—S2—Na1—O2−105.24 (18)
C4—C6—C7—C8174.5 (9)Na1i—S2—Na1—O232.28 (18)
C6—C7—C8—C94.0 (16)C2—S2—Na1—O2iv−32.8 (3)
C7—C8—C9—C10−3.7 (16)Na1ii—S2—Na1—O2iv159.16 (19)
C7—C8—C9—Cl1178.3 (8)Na1iii—S2—Na1—O2iv92.68 (18)
C8—C9—C10—C112.7 (15)Na1i—S2—Na1—O2iv−129.80 (19)
Cl1—C9—C10—C11−179.2 (7)C2—S2—Na1—S2v−34.2 (10)
C7—C6—C11—C102.7 (14)Na1ii—S2—Na1—S2v157.7 (7)
C4—C6—C11—C10−175.2 (8)Na1iii—S2—Na1—S2v91.2 (9)
C9—C10—C11—C6−2.2 (14)Na1i—S2—Na1—S2v−131.3 (9)
S2—C2—N3—O13.1 (13)C2—S2—Na1—S2vi54.6 (3)
S1—C2—N3—O1−176.2 (7)Na1ii—S2—Na1—S2vi−113.52 (17)
S2—C2—N3—C4−177.0 (7)Na1iii—S2—Na1—S2vi180.0
S1—C2—N3—C43.7 (10)Na1i—S2—Na1—S2vi−42.48 (9)
C5—C4—N3—O1177.3 (9)C2—S2—Na1—S2iv−115.1 (3)
C6—C4—N3—O1−7.4 (14)Na1ii—S2—Na1—S2iv76.8 (2)
C5—C4—N3—C2−2.7 (13)Na1iii—S2—Na1—S2iv10.34 (13)
C6—C4—N3—C2172.7 (8)Na1i—S2—Na1—S2iv147.86 (14)
C4—C5—S1—C21.5 (10)C2—S2—Na1—Na1i97.1 (3)
N3—C2—S1—C5−2.9 (8)Na1ii—S2—Na1—Na1i−71.04 (19)
S2—C2—S1—C5177.7 (6)Na1iii—S2—Na1—Na1i−137.52 (9)
N3—C2—S2—Na1ii−135.5 (7)C2—S2—Na1—Na1iv−68.2 (3)
S1—C2—S2—Na1ii43.7 (6)Na1ii—S2—Na1—Na1iv123.7 (2)
N3—C2—S2—Na1iii−46.0 (9)Na1iii—S2—Na1—Na1iv57.21 (18)
S1—C2—S2—Na1iii133.2 (4)Na1i—S2—Na1—Na1iv−165.27 (19)
N3—C2—S2—Na1i129.8 (8)C2—S2—Na1—Na1vi54.6 (3)
S1—C2—S2—Na1i−51.0 (6)Na1ii—S2—Na1—Na1vi−113.52 (17)
N3—C2—S2—Na154.1 (8)Na1iii—S2—Na1—Na1vi180.0
S1—C2—S2—Na1−126.7 (5)Na1i—S2—Na1—Na1vi−42.48 (9)
Na1i—O2—Na1—O2iv47.1 (12)C2—S2—Na1—Na1iii−125.4 (3)
Na1i—O2—Na1—S2v137.05 (17)Na1ii—S2—Na1—Na1iii66.48 (17)
Na1i—O2—Na1—S2vi50.6 (2)Na1i—S2—Na1—Na1iii137.52 (9)
Na1i—O2—Na1—S2iv−126.10 (17)

Symmetry codes: (i) −x−1/2, y, z−1/2; (ii) −x−1/2, y−1, z−1/2; (iii) x, y−1, z; (iv) −x−1/2, y, z+1/2; (v) −x−1/2, y+1, z+1/2; (vi) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.88 (5)1.80 (5)2.675 (8)175 (9)
O2—H2A···N3i0.88 (5)2.61 (6)3.434 (9)156 (8)
O2—H2B···O1vii0.89 (5)1.91 (6)2.770 (8)164 (9)

Symmetry codes: (i) −x−1/2, y, z−1/2; (vii) −x−1/2, y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2452).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. A. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hartung, J., Gross, A. & Bergsträsser, U. (2007). Acta Cryst. E63, o2743–o2745.
  • Hartung, J., Schwarz, M., Svoboda, I., Fuess, H. & Duarte, M. T. (1999). Eur. J. Org. Chem. pp. 1275–1290.
  • Hartung, J., Svoboda, I. & Fuess, H. (1996). Acta Cryst. C52, 2841–2844.
  • Nardelli, M. (1999). J. Appl. Cryst.32, 563–571.
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography