PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o402.
Published online 2008 January 9. doi:  10.1107/S1600536807068833
PMCID: PMC2960369

6,7,8,9,10,11,12,13-Octa­hydro-5H-1,3-dithiole[4,5-b][1,4]dithia­cyclo­tridecine-2-thione

Abstract

In the crystal structure of the title compound, C12H18S5, no significant inter­molecular π–π inter­actions are found. Weak inter­molecular C—S(...)π [S(...)centroid = 3.787 (1) Å] inter­actions and van der Waals forces may be effective in the stabilization of the structure.

Related literature

For general background, see: Ferraris et al. (1973 [triangle]); Williams et al. (1992 [triangle]); Bechgaard et al. (1975 [triangle]); Engler et al. (1977 [triangle]); Kini et al. (1999 [triangle]); Li et al. (2000 [triangle]); Svenstrup & Becher (1995 [triangle]). For related literature, see: Kumar et al. (1998 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o402-scheme1.jpg

Experimental

Crystal data

  • C12H18S5
  • M r = 322.56
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o402-efi1.jpg
  • a = 5.588 (1) Å
  • b = 13.067 (1) Å
  • c = 20.446 (2) Å
  • β = 97.07 (1)°
  • V = 1481.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.76 mm−1
  • T = 173 (2) K
  • 0.2 × 0.18 × 0.07 mm

Data collection

  • Stoe IPDS-II diffractometer
  • Absorption correction: numerical (shape of crystal determined optically; X-RED32 and X-SHAPE; Stoe & Cie, 2005 [triangle]) T min = 0.856, T max = 0.948
  • 20411 measured reflections
  • 2866 independent reflections
  • 1423 reflections with I > 2σ(I)
  • R int = 0.107

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.046
  • S = 0.90
  • 2866 reflections
  • 155 parameters
  • H-atom paramteres constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068833/hk2410sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068833/hk2410Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge K. N. Toosi University of Technology for financial support.

supplementary crystallographic information

Comment

Since the discovery of the first organic metal TTF-TCNQ (TTF: tetrathiafulvalene TCNQ: 7,7,8,8-tetracyanoquinodimethane) (Ferraris et al., 1973) organic electron donors with a TTF backbone have been widely investigated in terms of synthetic and structural as well as physical aspects (Williams et al., 1992). The most conventional route to these electron donors is based on the coupling of 1,3-thiole-2-thione (one) derivatives promoted by trialkyl phosphite (Bechgaard et al., 1975; Engler et al., 1977; Kini et al., 1999; Li et al., 2000). Thus, the key precursors to these TTF-based electron donors are 1,3-thiole-2-thione (one) derivatives. Among them, 4,5-bisalkylthio-1,3-dithiole-2-thione can be routinely prepared by the reaction between a zinc complex of 1,3-dithiole-2 -thione-4,5-dithiolate or the anion 1,3-dithiole-2-thione-4,5-dithiolate generated in situ and suitable electrophilic reagents (Svenstrup & Becher, 1995). Thus the interest in the synthesis of various 1,3-dithiole-2-chalcogenone is evident and promoted us to take up this project. In continuation of our work in this field, we report herein the crystal structure of title ligand, (I).

In the molecule of (I) (Fig. 1), the bond lengths are within normal ranges (Allen et al., 1987).

In the crystal structure, no significant intermolecular π–π interactions are observed. Weak intermolecular C—S···π interactions, with S1···Cg1 = 3.787 (1) Å [Cg1 denotes centroid of cyclotridecine ring; (S1/S4/C1/C2/C12), symmetry code: -1 + x, y, z] and van der Waals forces stabilize the crystal structure.

Experimental

The synthesis of (I) was carried out via the coupling of 1,9-dibromooctane (1 mmol) with the zinc complex of 1,3-dithiole-2-thione-4,5-dithiolate (0.5 mmol) in acetone (5 ml) at 293 K. The color of the mixture was turned from red to yellow. The pure compound was obtained in 32% yield by washing of the crude product with chloroform, in which it is highly soluble (Kumar et al., 1998).

Refinement

H atoms were positioned geometrically, with C—H = 0.99 Å for methylene H, and constrained to ride on their parent atoms, with Uiso(H) = 0.050 (2) Å2.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C12H18S5F000 = 680
Mr = 322.56Dx = 1.446 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10000 reflections
a = 5.588 (1) Åθ = 1.9–25.9º
b = 13.067 (1) ŵ = 0.76 mm1
c = 20.446 (2) ÅT = 173 (2) K
β = 97.07 (1)ºPlates, yellow
V = 1481.6 (3) Å30.2 × 0.18 × 0.07 mm
Z = 4

Data collection

Stoe IPDS-II diffractometerRint = 0.107
[var phi] scansθmax = 25.9º
Absorption correction: numerical(shape of crystal determined optically; X-RED32 and X-SHAPE; Stoe & Cie, 2005)θmin = 1.9º
Tmin = 0.856, Tmax = 0.948h = −6→6
20411 measured reflectionsk = −15→16
2866 independent reflectionsl = −25→25
1423 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.046  w = 1/[σ2(Fo2) + (0.011P)2P] where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max = 0.002
2866 reflectionsΔρmax = 0.20 e Å3
155 parametersΔρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.15648 (13)0.36424 (6)0.20855 (4)0.0339 (2)
S20.60599 (13)0.38230 (7)0.30580 (4)0.0359 (2)
S30.55751 (13)0.13199 (7)0.32641 (4)0.0384 (2)
S40.11036 (13)0.14671 (6)0.22596 (4)0.0356 (2)
S5−0.26751 (12)0.25565 (8)0.13696 (3)0.03771 (19)
C1−0.0162 (4)0.2563 (3)0.18733 (11)0.0301 (6)
C20.3700 (5)0.3076 (2)0.26703 (13)0.0292 (7)
C30.4388 (5)0.4824 (2)0.34333 (15)0.0403 (8)
H310.55630.52990.36750.050 (2)*
H320.34470.52190.30770.050 (2)*
C40.2663 (6)0.4446 (3)0.39077 (15)0.0405 (8)
H410.18720.50450.40860.050 (2)*
H420.13900.40230.36590.050 (2)*
C50.3895 (5)0.3822 (3)0.44765 (14)0.0438 (8)
H510.53120.42060.46870.050 (2)*
H520.44860.31750.43030.050 (2)*
C60.2221 (5)0.3571 (3)0.50025 (14)0.0458 (9)
H610.32420.33400.54060.050 (2)*
H620.14240.42140.51140.050 (2)*
C70.0271 (5)0.2770 (2)0.48280 (14)0.0434 (9)
H71−0.01700.27690.43440.050 (2)*
H72−0.11790.29720.50300.050 (2)*
C80.0975 (6)0.1682 (3)0.50494 (14)0.0470 (9)
H810.16140.17040.55230.050 (2)*
H82−0.05070.12600.50080.050 (2)*
C90.2818 (6)0.1145 (3)0.46824 (14)0.0446 (9)
H910.34300.05330.49360.050 (2)*
H920.41990.16110.46530.050 (2)*
C100.1780 (5)0.0816 (2)0.39871 (14)0.0405 (8)
H1010.05090.02980.40210.050 (2)*
H1020.10090.14170.37530.050 (2)*
C110.3638 (5)0.0371 (2)0.35761 (15)0.0376 (8)
H1110.2777−0.00080.31990.050 (2)*
H1120.4656−0.01260.38500.050 (2)*
C120.3500 (5)0.2060 (2)0.27516 (13)0.0292 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0339 (4)0.0324 (5)0.0350 (4)−0.0027 (4)0.0022 (3)0.0027 (4)
S20.0295 (4)0.0386 (5)0.0396 (4)−0.0053 (4)0.0042 (4)−0.0042 (4)
S30.0312 (4)0.0394 (5)0.0437 (5)0.0050 (4)0.0013 (4)0.0023 (4)
S40.0350 (5)0.0306 (5)0.0399 (4)−0.0020 (4)−0.0002 (4)−0.0017 (4)
S50.0349 (4)0.0417 (5)0.0353 (4)−0.0011 (4)−0.0006 (3)−0.0007 (4)
C10.0328 (15)0.0328 (17)0.0268 (15)−0.0002 (15)0.0126 (11)−0.0026 (15)
C20.0277 (18)0.034 (2)0.0275 (16)0.0014 (13)0.0094 (14)−0.0018 (14)
C30.0429 (18)0.035 (2)0.0437 (19)−0.0040 (15)0.0080 (15)−0.0085 (15)
C40.0424 (19)0.039 (2)0.0399 (18)0.0058 (15)0.0050 (15)−0.0045 (16)
C50.0462 (18)0.043 (2)0.0419 (18)−0.0003 (16)0.0042 (14)−0.0029 (16)
C60.055 (2)0.050 (2)0.0326 (17)0.0093 (19)0.0065 (15)−0.0035 (17)
C70.0426 (17)0.054 (3)0.0351 (17)0.0132 (16)0.0122 (14)0.0030 (16)
C80.054 (2)0.051 (2)0.0371 (18)0.0110 (17)0.0114 (15)0.0080 (15)
C90.050 (2)0.043 (2)0.0398 (18)0.0173 (17)0.0005 (15)0.0056 (16)
C100.0394 (18)0.046 (2)0.0360 (18)−0.0001 (15)0.0055 (14)0.0061 (15)
C110.0439 (19)0.0284 (19)0.0400 (19)0.0005 (15)0.0027 (15)0.0029 (14)
C120.0252 (17)0.039 (2)0.0244 (15)0.0002 (14)0.0058 (13)−0.0016 (14)

Geometric parameters (Å, °)

S1—C11.734 (3)C5—H520.9900
S1—C21.746 (3)C6—C71.521 (4)
S2—C21.750 (3)C6—H610.9900
S2—C31.830 (3)C6—H620.9900
S3—C121.754 (3)C7—C81.528 (4)
S3—C111.813 (3)C7—H710.9900
S4—C11.743 (3)C7—H720.9900
S4—C121.753 (3)C8—C91.519 (4)
S5—C11.636 (2)C8—H810.9900
C2—C121.345 (3)C8—H820.9900
C3—C41.531 (4)C9—C101.529 (4)
C3—H310.9900C9—H910.9900
C3—H320.9900C9—H920.9900
C4—C51.515 (4)C10—C111.529 (4)
C4—H410.9900C10—H1010.9900
C4—H420.9900C10—H1020.9900
C5—C61.545 (4)C11—H1110.9900
C5—H510.9900C11—H1120.9900
C1—S1—C297.99 (14)C6—C7—C8114.8 (3)
C2—S2—C3101.15 (14)C6—C7—H71108.6
C12—S3—C11101.98 (14)C8—C7—H71108.6
C1—S4—C1297.81 (14)C6—C7—H72108.6
S5—C1—S1124.7 (2)C8—C7—H72108.6
S5—C1—S4123.4 (2)H71—C7—H72107.5
S1—C1—S4111.88 (12)C9—C8—C7116.7 (2)
C12—C2—S1116.3 (2)C9—C8—H81108.1
C12—C2—S2124.3 (2)C7—C8—H81108.1
S1—C2—S2119.16 (18)C9—C8—H82108.1
C4—C3—S2115.4 (2)C7—C8—H82108.1
C4—C3—H31108.4H81—C8—H82107.3
S2—C3—H31108.4C8—C9—C10112.7 (3)
C4—C3—H32108.4C8—C9—H91109.0
S2—C3—H32108.4C10—C9—H91109.0
H31—C3—H32107.5C8—C9—H92109.0
C5—C4—C3113.5 (3)C10—C9—H92109.0
C5—C4—H41108.9H91—C9—H92107.8
C3—C4—H41108.9C11—C10—C9114.4 (2)
C5—C4—H42108.9C11—C10—H101108.7
C3—C4—H42108.9C9—C10—H101108.7
H41—C4—H42107.7C11—C10—H102108.7
C4—C5—C6113.1 (2)C9—C10—H102108.7
C4—C5—H51109.0H101—C10—H102107.6
C6—C5—H51109.0C10—C11—S3114.1 (2)
C4—C5—H52109.0C10—C11—H111108.7
C6—C5—H52109.0S3—C11—H111108.7
H51—C5—H52107.8C10—C11—H112108.7
C7—C6—C5117.4 (2)S3—C11—H112108.7
C7—C6—H61107.9H111—C11—H112107.6
C5—C6—H61107.9C2—C12—S4115.8 (2)
C7—C6—H62107.9C2—C12—S3124.0 (2)
C5—C6—H62107.9S4—C12—S3120.10 (19)
H61—C6—H62107.2

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2410).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bechgaard, K., Cowan, D. O., Bloch, A. N. & Henriksen, L. (1975). J. Org. Chem.40, 746–749.
  • Engler, E. M., Scott, B. A., Etemad, S., Penney, T. & Patel, V. V. (1977). J. Am. Chem. Soc.99, 5909–5916.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Ferraris, J., Walatka, V., Perlstein, J. H. & Cowan, D. O. (1973). J. Am. Chem. Soc.95, 948–949.
  • Kini, A. M., Parakka, J. P., Geiser, U., Wang, H.-H., Rivas, F., DiNino, E., Thomas, S., Dudek, J. D. & Williams, J. M. (1999). J. Mater. Chem.9, 883–892.
  • Kumar, E. V. K. S., Singh, J. D., Singh, H. B., Das, K., Yakhmi, J. V. & Butcher, R. J. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1769–1777.
  • Li, H.-X., Zhang, D.-Q., Zhang, B., Yao, Y.-X., Xu, W., Zhu, D.-B. & Wang, Z.-M. (2000). J. Mater. Chem.10, 2063–2067.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2005). X-AREA (Version 1.31), X-RED32 (Version 1.28b) and X-SHAPE (Version 2.05). Stoe & Cie, Darmstadt, Germany.
  • Svenstrup, N. & Becher, J. (1995). Synthesis, pp. 215–235.
  • Williams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M. & Whangbo, M.-H. (1992). Organic Superconductors (including Fullerenes) Englewood Cliffs, New Jersey: Prentice Hall.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography