PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m341.
Published online 2008 January 11. doi:  10.1107/S1600536808000779
PMCID: PMC2960365

Di-μ-chlorido-bis­{[2-(2-pyridylmethyl­amino)ethanesulfonato-κ3 N,N′,O]copper(II)}

Abstract

In the title compound, [Cu2(C8H11N2O3S)2Cl2], the Cu atoms are five-coordinated in a distorted square-pyramidal geometry by three donor atoms of the deprotonated anionic 2-(2-pyridylmethyl­amino)ethanesulfonate (pmt) ligand and two Cl atoms. The Cl atoms bridge two Cu atoms, giving a binuclear structure; the centroid of the Cu2Cl2 ring lies on a crystallographic center of inversion. The complex is stabilized by hydrogen bonds and π–π stacking inter­actions [average inter­planar distance = 3.4969 (1) Å and ring-centroid separation distance = 4.1068 (4) Å].

Related literature

For related literature, see: Li et al. (2006 [triangle], 2007a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m341-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C8H11N2O3S)2Cl2]
  • M r = 628.48
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m341-efi1.jpg
  • a = 8.294 (1) Å
  • b = 8.362 (1) Å
  • c = 9.110 (1) Å
  • α = 103.773 (2)°
  • β = 98.118 (2)°
  • γ = 113.043 (2)°
  • V = 544.9 (1) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 2.43 mm−1
  • T = 291 (2) K
  • 0.33 × 0.20 × 0.09 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.504, T max = 0.811
  • 3270 measured reflections
  • 2385 independent reflections
  • 2224 reflections with I > 2σ(I)
  • R int = 0.009

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.067
  • S = 1.10
  • 2385 reflections
  • 149 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000779/im2051sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000779/im2051Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20471026) and the Natural Science Foundation of Henan Province (No. 0311021200).

supplementary crystallographic information

Comment

Previously, one Co (Li et al., 2006) and two Cu complexes (Li et al., 2007a,b) containing the reduced schiff base ligand 2-pyridine-2-ylmethylamino-ethanesulfonic acid (Hpmt) have been reported. Herein we describe the structure of another dinuclear Cu compound, Figure 1.

The title compound is a binuclear Cu complex and each Cu center has square-pyramidal geometry formed by two N and one O atoms of an anionic pmt ligand and two chlorine atoms. The plane N1/N2/O1/Cl1A defines the base of the pyramid while Cl1 occupies the apical position. Cu1 is situated 0.168 (1) Å above the N1/N2/O1/Cl1A plane. The chlorine atoms bridge the Cu atoms to form this binuclear structure, with a Cu1···Cu1(-x, -y + 2, -z + 1) distance of 3.461 (2) Å.

The N—H donor and S?O acceptor (Table 1) groups of the pmt ligand participate in hydrogen bonding and they join the dinuclear complex units into a one-dimensional chain structure along b axis (Figure 2 and Table 1). These chains are further expanded into a two-dimensional network viaπ-π stacking between the pyridine rings of adjacent parallel chains. The interplanar average distance and ring-centroid separation disstance are 3.4969 (1) Å and 4.1068 (4) Å, respectively.

Experimental

The ligand 2-pyridin-2-ylmethylamino-ethanesulfonic acid (Hpmt) was prepared according to the method of Li et al. (2006). 10 ml of an aqueous solution of CuCl2 × 2 H2O (0.171 g, 1 mmol) was dropped into 10 ml of an methanolic solution of Hpmt (0.216 g, 1 mmol). Then the mixture was stirred for 6 h at 343 K.The filtrate was left to stand under air for about one week to obtain blue block-shaped crystals. Analysis, found (%): C, 30.51; H, 3.50; N, 8.91; S, 10.18. [C16H22N4O6S2Cl2Cu2] requires (%): C,30.55; H,5.55; N,12.96; S,14.81.

Refinement

H atoms bonded to C and N were positioned geometrically with C—H distances of 0.93 or 0.97 Å and a N—H distance of 0.95 Å, respectively, and treated as riding atoms with Uiso(H) = 1.2 Ueq(C or N).

Figures

Fig. 1.
The molecular structure of (I) with atom-numbering scheme. Atoms with the suffix A are at the symmetry position (-x, -y + 2, -z + 1).
Fig. 2.
Packing diagram, projected on the bc plane, showing the hydrogen bonding and π-π stacking interactions. H atoms have partially been omitted for the sake of clarity.

Crystal data

[Cu2(C8H11N2O3S)2Cl2]Z = 1
Mr = 628.28F000 = 318
Triclinic, P1Dx = 1.915 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.294 (1) ÅCell parameters from 2667 reflections
b = 8.362 (1) Åθ = 2.4–28.3º
c = 9.110 (1) ŵ = 2.43 mm1
α = 103.773 (2)ºT = 291 (2) K
β = 98.118 (2)ºBlock, blue
γ = 113.043 (2)º0.33 × 0.20 × 0.09 mm
V = 544.9 (1) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer2385 independent reflections
Radiation source: fine-focus sealed tube2224 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.009
T = 291(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.505, Tmax = 0.811k = −10→10
3270 measured reflectionsl = −9→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067  w = 1/[σ2(Fo2) + (0.037P)2 + 0.2091P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2385 reflectionsΔρmax = 0.48 e Å3
149 parametersΔρmin = −0.34 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu1−0.00815 (3)0.79189 (3)0.40050 (2)0.02480 (9)
Cl10.21525 (6)1.15056 (7)0.48221 (5)0.02695 (12)
S10.25729 (6)0.72960 (7)0.64825 (6)0.02540 (12)
O10.09412 (19)0.7556 (2)0.59265 (16)0.0311 (3)
O20.4160 (2)0.9013 (2)0.72554 (19)0.0385 (4)
O30.2140 (2)0.6050 (2)0.74013 (19)0.0381 (4)
N1−0.1223 (2)0.7825 (2)0.18742 (18)0.0257 (3)
N20.1380 (2)0.6952 (2)0.2771 (2)0.0276 (3)
C1−0.2789 (3)0.7931 (4)0.1445 (3)0.0382 (5)
H1−0.34260.80780.21880.046*
C2−0.3480 (3)0.7828 (4)−0.0065 (3)0.0443 (6)
H2−0.45780.7878−0.03400.053*
C3−0.2519 (3)0.7652 (3)−0.1151 (2)0.0391 (5)
H3−0.29610.7581−0.21740.047*
C4−0.0881 (3)0.7580 (3)−0.0712 (2)0.0332 (5)
H4−0.02030.7481−0.14300.040*
C5−0.0275 (3)0.7659 (3)0.0813 (2)0.0264 (4)
C60.1491 (3)0.7631 (3)0.1417 (2)0.0314 (4)
H6A0.17260.68350.06000.038*
H6B0.24780.88570.17310.038*
C70.3187 (3)0.7178 (3)0.3579 (2)0.0287 (4)
H7A0.39880.84720.40990.034*
H7B0.37250.66990.28120.034*
C80.2998 (3)0.6170 (3)0.4776 (2)0.0296 (4)
H8A0.41040.60490.50740.035*
H8B0.20110.49440.42970.035*
H1N0.051 (4)0.570 (4)0.233 (3)0.045 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02148 (14)0.03819 (16)0.02055 (13)0.01626 (11)0.00702 (9)0.01323 (10)
Cl10.0222 (2)0.0363 (3)0.0269 (2)0.01426 (19)0.01029 (18)0.01360 (18)
S10.0178 (2)0.0297 (3)0.0285 (2)0.00845 (19)0.00306 (18)0.01438 (19)
O10.0270 (7)0.0504 (9)0.0255 (7)0.0230 (7)0.0082 (6)0.0174 (6)
O20.0268 (8)0.0346 (8)0.0401 (8)0.0044 (6)0.0010 (6)0.0087 (6)
O30.0324 (8)0.0455 (9)0.0432 (9)0.0154 (7)0.0091 (7)0.0296 (7)
N10.0243 (8)0.0332 (9)0.0211 (7)0.0132 (7)0.0053 (6)0.0109 (6)
N20.0229 (8)0.0328 (9)0.0281 (8)0.0125 (7)0.0071 (7)0.0112 (7)
C10.0324 (11)0.0617 (15)0.0289 (10)0.0259 (11)0.0085 (9)0.0196 (10)
C20.0384 (13)0.0680 (17)0.0339 (11)0.0295 (12)0.0035 (10)0.0217 (11)
C30.0485 (14)0.0455 (13)0.0227 (10)0.0210 (11)0.0021 (9)0.0139 (9)
C40.0422 (12)0.0353 (11)0.0224 (9)0.0166 (10)0.0103 (9)0.0096 (8)
C50.0294 (10)0.0245 (9)0.0236 (9)0.0101 (8)0.0073 (8)0.0080 (7)
C60.0297 (10)0.0429 (12)0.0262 (9)0.0174 (9)0.0123 (8)0.0139 (8)
C70.0204 (9)0.0343 (11)0.0319 (10)0.0118 (8)0.0072 (8)0.0115 (8)
C80.0246 (10)0.0280 (10)0.0388 (11)0.0132 (8)0.0078 (8)0.0130 (8)

Geometric parameters (Å, °)

Cu1—O11.9775 (14)C1—H10.9300
Cu1—N12.0051 (16)C2—C31.371 (4)
Cu1—N22.0268 (17)C2—H20.9300
Cu1—Cl1i2.2901 (5)C3—C41.390 (3)
Cu1—Cl12.6796 (7)C3—H30.9300
Cl1—Cu1i2.2901 (5)C4—C51.386 (3)
S1—O21.4380 (16)C4—H40.9300
S1—O31.4568 (15)C5—C61.501 (3)
S1—O11.4916 (14)C6—H6A0.9700
S1—C81.774 (2)C6—H6B0.9700
N1—C51.345 (3)C7—C81.519 (3)
N1—C11.346 (3)C7—H7A0.9700
N2—C61.475 (3)C7—H7B0.9700
N2—C71.492 (2)C8—H8A0.9700
N2—H1N0.95 (3)C8—H8B0.9700
C1—C21.382 (3)
O1—Cu1—N1169.95 (7)C3—C2—C1118.9 (2)
O1—Cu1—N292.73 (6)C3—C2—H2120.5
N1—Cu1—N281.18 (7)C1—C2—H2120.5
O1—Cu1—Cl1i89.03 (4)C2—C3—C4119.45 (19)
N1—Cu1—Cl1i95.57 (5)C2—C3—H3120.3
N2—Cu1—Cl1i169.68 (5)C4—C3—H3120.3
O1—Cu1—Cl196.00 (5)C5—C4—C3118.9 (2)
N1—Cu1—Cl192.76 (5)C5—C4—H4120.5
N2—Cu1—Cl197.82 (5)C3—C4—H4120.5
Cl1i—Cu1—Cl192.091 (19)N1—C5—C4121.49 (19)
Cu1i—Cl1—Cu187.910 (19)N1—C5—C6115.27 (16)
O2—S1—O3114.61 (10)C4—C5—C6123.21 (18)
O2—S1—O1112.23 (10)N2—C6—C5108.83 (16)
O3—S1—O1109.38 (9)N2—C6—H6A109.9
O2—S1—C8107.16 (10)C5—C6—H6A109.9
O3—S1—C8106.96 (10)N2—C6—H6B109.9
O1—S1—C8105.98 (9)C5—C6—H6B109.9
S1—O1—Cu1134.45 (9)H6A—C6—H6B108.3
C5—N1—C1119.10 (17)N2—C7—C8110.64 (16)
C5—N1—Cu1114.53 (13)N2—C7—H7A109.5
C1—N1—Cu1126.36 (14)C8—C7—H7A109.5
C6—N2—C7111.18 (16)N2—C7—H7B109.5
C6—N2—Cu1108.32 (13)C8—C7—H7B109.5
C7—N2—Cu1120.32 (13)H7A—C7—H7B108.1
C6—N2—H1N104.2 (16)C7—C8—S1113.05 (14)
C7—N2—H1N112.8 (16)C7—C8—H8A109.0
Cu1—N2—H1N98.3 (16)S1—C8—H8A109.0
N1—C1—C2122.1 (2)C7—C8—H8B109.0
N1—C1—H1119.0S1—C8—H8B109.0
C2—C1—H1119.0H8A—C8—H8B107.8
O1—Cu1—Cl1—Cu1i−89.25 (4)N1—Cu1—N2—C7158.15 (16)
N1—Cu1—Cl1—Cu1i95.68 (5)Cl1i—Cu1—N2—C7−129.6 (2)
N2—Cu1—Cl1—Cu1i177.15 (5)Cl1—Cu1—N2—C766.55 (14)
Cl1i—Cu1—Cl1—Cu1i0.0C5—N1—C1—C21.6 (4)
O2—S1—O1—Cu186.40 (15)Cu1—N1—C1—C2−179.12 (19)
O3—S1—O1—Cu1−145.24 (13)N1—C1—C2—C3−1.4 (4)
C8—S1—O1—Cu1−30.26 (16)C1—C2—C3—C40.0 (4)
N1—Cu1—O1—S170.6 (4)C2—C3—C4—C51.1 (4)
N2—Cu1—O1—S118.24 (15)C1—N1—C5—C4−0.5 (3)
Cl1i—Cu1—O1—S1−171.93 (14)Cu1—N1—C5—C4−179.82 (16)
Cl1—Cu1—O1—S1−79.93 (14)C1—N1—C5—C6177.54 (19)
O1—Cu1—N1—C5−68.7 (4)Cu1—N1—C5—C6−1.8 (2)
N2—Cu1—N1—C5−15.48 (14)C3—C4—C5—N1−0.9 (3)
Cl1i—Cu1—N1—C5174.39 (13)C3—C4—C5—C6−178.7 (2)
Cl1—Cu1—N1—C582.02 (14)C7—N2—C6—C5−170.83 (17)
O1—Cu1—N1—C1112.1 (4)Cu1—N2—C6—C5−36.51 (19)
N2—Cu1—N1—C1165.2 (2)N1—C5—C6—N225.8 (2)
Cl1i—Cu1—N1—C1−4.89 (19)C4—C5—C6—N2−156.21 (19)
Cl1—Cu1—N1—C1−97.27 (19)C6—N2—C7—C8−169.70 (17)
O1—Cu1—N2—C6−159.28 (14)Cu1—N2—C7—C862.2 (2)
N1—Cu1—N2—C628.76 (14)N2—C7—C8—S1−74.07 (19)
Cl1i—Cu1—N2—C6101.0 (3)O2—S1—C8—C7−65.44 (17)
Cl1—Cu1—N2—C6−62.84 (13)O3—S1—C8—C7171.21 (14)
O1—Cu1—N2—C7−29.89 (15)O1—S1—C8—C754.58 (17)

Symmetry codes: (i) −x, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1N···O3ii0.95 (3)2.20 (3)2.966 (2)137 (2)

Symmetry codes: (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2051).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984–m2986.
  • Li, J.-X., Jiang, Y.-M. & Wang, J.-G. (2007a). Acta Cryst. E63, m213–m215.
  • Li, J.-X., Jiang, Y.-M. & Wang, J.-G. (2007b). Acta Cryst. E63, m601–m603.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography