PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o381.
Published online 2008 January 9. doi:  10.1107/S1600536807068808
PMCID: PMC2960357

N-(3-Chloro­phen­yl)acetamide

Abstract

The conformation of the N—H bond in the structure of the title compound (3CPA), C8H8ClNO, is anti to the meta-chloro substituent, in contrast to the syn conformation observed for the ortho-chloro substituent in N-(2-chloro­phen­yl)acetamide, syn to both the ortho and meta chloro substituents in N-(2,3-dichloro­phen­yl)acetamide, and syn to the ortho chloro substituent in N-(2,4-dichloro­phen­yl)acetamide. There are two mol­ecules, linked by an N—H(...)O hydrogen bond, in the asymmetric unit of 3CPA. The bond parameters in 3CPA are similar to those of other acetanilides and the mol­ecules are packed into chains through inter­molecular N—H(...)O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2006 [triangle]); Gowda, Foro & Fuess (2007 [triangle]); Gowda, Svoboda & Fuess (2007 [triangle]); Pies et al. (1971 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o381-scheme1.jpg

Experimental

Crystal data

  • C8H8ClNO
  • M r = 169.60
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o381-efi2.jpg
  • a = 4.8468 (8) Å
  • b = 18.562 (2) Å
  • c = 18.852 (3) Å
  • V = 1696.0 (4) Å3
  • Z = 8
  • Cu Kα radiation
  • μ = 3.51 mm−1
  • T = 299 (2) K
  • 0.60 × 0.15 × 0.08 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.225, T max = 0.756
  • 3119 measured reflections
  • 2780 independent reflections
  • 2098 reflections with I > 2σ(I)
  • R int = 0.019
  • 3 standard reflections frequency: 120 min intensity decay: 2.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.082
  • wR(F 2) = 0.224
  • S = 1.07
  • 2780 reflections
  • 207 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.59 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 987 Friedel pairs
  • Flack parameter: 0.00 (4)

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068808/dn2306sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068808/dn2306Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of N-(3-chlorophenyl)-acetamide (3CPA) has been determined to study the effect of substituents on the structures of N-aromatic amides (Gowda, Foro & Fuess, 2007; Gowda, Svoboda & Fuess, 2007). The conformation of the N—H bond in the structure of 3CPA (Fig. 1) is anti to the meta-chloro substituent in contrast to the syn conformation observed for the ortho-chloro substituent in N-(2-chlorophenyl)-acetamide (2CPA)(Gowda, Svoboda & Fuess, 2007), syn to both the ortho and meta Chloro substituents in N-(2,3-dichlorophenyl)-acetamide(23DCPA)(Gowda, Foro & Fuess, 2007) and syn to the ortho-chloro substituent in N-(2,4-dichlorophenyl)-acetamide (24DCPA)(Gowda, Svoboda & Fuess, 2007). The structure of 3CPA has two molecules linked by N—H···O hydrogen bond in its asymmetric unit. The geometric parameters of 3CPA are similar to those of 2CPA, 23DCPA, 24DCPA and other acetanilides (Gowda, Foro & Fuess, 2007; Gowda, Svoboda & Fuess, 2007). The molecules are linked by hydrogen bonds, N1H1NO2 and N2H2NO1 with respective H1N O2 and H2N O1 lenghts of 2.00 and 2.11 Å, and the angles, N1 H1N O2 and N2 H2N O1 of 166 and 167 °, respectively (Table 1 & Fig. 2).

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2006). The purity of the compound was checked by determining its melting point. The compound was characterized by recording its infrared,NMR and NQR spectra (Gowda et al., 2006 and Pies et al., 1971). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The NH atoms were located in difference map with N—H = 0.83 (2)–0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å A l l H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dashed line. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) -x, y - 1/2, 1/2 - z]

Crystal data

C8H8ClNOF000 = 704
Mr = 169.60Dx = 1.328 Mg m3
Orthorhombic, P212121Cu Kα radiation λ = 1.54180 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 4.8468 (8) Åθ = 4.8–19.8º
b = 18.562 (2) ŵ = 3.51 mm1
c = 18.852 (3) ÅT = 299 (2) K
V = 1696.0 (4) Å3Needle, colourless
Z = 80.60 × 0.15 × 0.08 mm

Data collection

Enraf–Nonius CAD4 diffractometerRint = 0.019
Radiation source: fine-focus sealed tubeθmax = 67.0º
Monochromator: graphiteθmin = 3.3º
T = 299(2) Kh = −5→0
ω/2θ scansk = −22→0
Absorption correction: ψ scan(North et al., 1968)l = −22→14
Tmin = 0.225, Tmax = 0.7573 standard reflections
3119 measured reflections every 120 min
2780 independent reflections intensity decay: 2.0%
2098 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.082  w = 1/[σ2(Fo2) + (0.1656P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.224(Δ/σ)max = 0.002
S = 1.07Δρmax = 0.43 e Å3
2780 reflectionsΔρmin = −0.59 e Å3
207 parametersExtinction correction: none
2 restraintsAbsolute structure: Flack (1983), 987 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.00 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.3831 (6)0.37160 (11)0.39860 (11)0.1367 (10)
O1−0.0630 (10)0.23187 (18)0.2036 (2)0.0880 (12)
N10.0399 (8)0.14104 (19)0.2789 (2)0.0641 (10)
H1N0.028 (12)0.0957 (12)0.288 (3)0.077*
C10.2186 (9)0.1757 (2)0.3267 (3)0.0609 (11)
C20.2211 (11)0.2491 (3)0.3358 (3)0.0687 (13)
H20.10680.27820.30840.082*
C30.3931 (14)0.2792 (4)0.3853 (3)0.0854 (17)
C40.5720 (14)0.2367 (6)0.4257 (4)0.108 (3)
H40.69150.25750.45840.130*
C50.5665 (16)0.1649 (6)0.4158 (4)0.116 (3)
H50.68510.13590.44210.139*
C60.3871 (13)0.1324 (4)0.3669 (3)0.0868 (16)
H60.38230.08250.36190.104*
C7−0.0907 (10)0.1695 (2)0.2219 (3)0.0608 (11)
C8−0.2696 (12)0.1186 (3)0.1825 (3)0.0804 (15)
H8A−0.23260.07030.19800.121*
H8B−0.23250.12250.13260.121*
H8C−0.45970.13010.19130.121*
Cl20.6744 (5)0.49383 (10)−0.03716 (11)0.1181 (8)
O20.0909 (9)0.49682 (17)0.1824 (2)0.0865 (12)
N20.1055 (8)0.37741 (16)0.1625 (2)0.0552 (9)
H2N0.085 (12)0.3348 (13)0.175 (3)0.066*
C90.3111 (8)0.3741 (2)0.1092 (2)0.0493 (9)
C100.3766 (11)0.4316 (2)0.0668 (3)0.0635 (12)
H100.28640.47560.07150.076*
C110.5868 (12)0.4215 (3)0.0158 (3)0.0679 (13)
C120.7118 (10)0.3568 (3)0.0071 (3)0.0675 (12)
H120.84370.3510−0.02830.081*
C130.6462 (10)0.3011 (3)0.0493 (3)0.0673 (13)
H130.73740.25730.04410.081*
C140.4402 (9)0.3086 (2)0.1013 (3)0.0587 (11)
H140.39200.26980.13000.070*
C150.0080 (9)0.4367 (2)0.1948 (3)0.0593 (11)
C16−0.2118 (12)0.4235 (3)0.2501 (3)0.0800 (15)
H16A−0.27540.37460.24670.120*
H16B−0.36360.45580.24230.120*
H16C−0.13620.43170.29640.120*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.172 (2)0.1231 (14)0.1148 (14)−0.0737 (15)0.0260 (16)−0.0395 (11)
O10.094 (3)0.0659 (19)0.104 (3)−0.0177 (19)−0.023 (2)0.0274 (19)
N10.057 (2)0.0524 (18)0.082 (3)−0.0095 (16)−0.003 (2)0.0140 (19)
C10.041 (2)0.075 (3)0.067 (3)−0.0049 (19)0.003 (2)0.008 (2)
C20.058 (3)0.078 (3)0.070 (3)−0.014 (2)0.005 (3)0.003 (2)
C30.068 (4)0.115 (4)0.073 (3)−0.034 (3)0.023 (3)−0.011 (3)
C40.053 (3)0.188 (8)0.083 (4)−0.032 (4)−0.001 (3)−0.026 (5)
C50.075 (4)0.176 (8)0.097 (5)0.034 (5)−0.025 (4)−0.007 (5)
C60.070 (3)0.104 (4)0.086 (4)0.020 (3)−0.010 (3)0.007 (3)
C70.054 (2)0.055 (2)0.073 (3)−0.0023 (19)−0.003 (2)0.009 (2)
C80.062 (3)0.085 (3)0.093 (4)−0.013 (3)−0.010 (3)0.001 (3)
Cl20.1326 (17)0.1002 (11)0.1217 (13)−0.0127 (11)0.0357 (13)0.0404 (10)
O20.086 (3)0.0506 (16)0.123 (3)0.0048 (19)0.018 (2)−0.0152 (18)
N20.0491 (18)0.0411 (15)0.075 (2)−0.0052 (15)0.0041 (19)−0.0026 (16)
C90.0391 (18)0.0504 (19)0.058 (2)−0.0029 (15)−0.0012 (19)−0.0094 (18)
C100.058 (3)0.051 (2)0.081 (3)0.005 (2)0.004 (2)0.006 (2)
C110.067 (3)0.071 (3)0.066 (3)−0.016 (2)0.001 (3)0.007 (2)
C120.047 (2)0.081 (3)0.075 (3)−0.002 (2)0.007 (2)−0.007 (3)
C130.040 (2)0.072 (3)0.090 (3)0.009 (2)0.008 (2)−0.009 (2)
C140.051 (2)0.050 (2)0.075 (3)−0.0008 (18)−0.003 (2)0.001 (2)
C150.052 (2)0.053 (2)0.073 (3)0.0010 (18)0.000 (2)−0.007 (2)
C160.054 (3)0.089 (3)0.097 (4)0.004 (2)0.012 (3)−0.015 (3)

Geometric parameters (Å, °)

Cl1—C31.735 (7)Cl2—C111.726 (5)
O1—C71.215 (5)O2—C151.209 (6)
N1—C71.355 (6)N2—C151.343 (5)
N1—C11.406 (6)N2—C91.416 (5)
N1—H1N0.86 (2)N2—H2N0.830 (19)
C1—C21.373 (7)C9—C101.371 (6)
C1—C61.375 (7)C9—C141.376 (6)
C2—C31.371 (8)C10—C111.414 (8)
C2—H20.9300C10—H100.9300
C3—C41.397 (11)C11—C121.354 (7)
C4—C51.347 (12)C12—C131.343 (7)
C4—H40.9300C12—H120.9300
C5—C61.403 (10)C13—C141.407 (7)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H140.9300
C7—C81.482 (7)C15—C161.511 (7)
C8—H8A0.9600C16—H16A0.9600
C8—H8B0.9600C16—H16B0.9600
C8—H8C0.9600C16—H16C0.9600
C7—N1—C1128.1 (4)C15—N2—C9127.2 (4)
C7—N1—H1N121 (4)C15—N2—H2N128 (4)
C1—N1—H1N111 (4)C9—N2—H2N104 (4)
C2—C1—C6120.5 (5)C10—C9—C14121.3 (4)
C2—C1—N1122.6 (4)C10—C9—N2122.9 (4)
C6—C1—N1116.8 (5)C14—C9—N2115.8 (4)
C3—C2—C1119.6 (6)C9—C10—C11117.4 (4)
C3—C2—H2120.2C9—C10—H10121.3
C1—C2—H2120.2C11—C10—H10121.3
C2—C3—C4121.3 (7)C12—C11—C10121.5 (4)
C2—C3—Cl1118.9 (6)C12—C11—Cl2120.6 (4)
C4—C3—Cl1119.8 (6)C10—C11—Cl2117.8 (4)
C5—C4—C3118.1 (6)C13—C12—C11120.3 (5)
C5—C4—H4121.0C13—C12—H12119.8
C3—C4—H4121.0C11—C12—H12119.8
C4—C5—C6121.9 (7)C12—C13—C14120.4 (4)
C4—C5—H5119.0C12—C13—H13119.8
C6—C5—H5119.0C14—C13—H13119.8
C1—C6—C5118.6 (6)C9—C14—C13119.0 (4)
C1—C6—H6120.7C9—C14—H14120.5
C5—C6—H6120.7C13—C14—H14120.5
O1—C7—N1123.0 (5)O2—C15—N2123.5 (5)
O1—C7—C8122.0 (5)O2—C15—C16121.1 (4)
N1—C7—C8114.9 (4)N2—C15—C16115.4 (4)
C7—C8—H8A109.5C15—C16—H16A109.5
C7—C8—H8B109.5C15—C16—H16B109.5
H8A—C8—H8B109.5H16A—C16—H16B109.5
C7—C8—H8C109.5C15—C16—H16C109.5
H8A—C8—H8C109.5H16A—C16—H16C109.5
H8B—C8—H8C109.5H16B—C16—H16C109.5
C7—N1—C1—C221.1 (8)C15—N2—C9—C10−22.1 (7)
C7—N1—C1—C6−161.3 (5)C15—N2—C9—C14159.1 (5)
C6—C1—C2—C30.0 (8)C14—C9—C10—C11−1.5 (7)
N1—C1—C2—C3177.5 (5)N2—C9—C10—C11179.8 (4)
C1—C2—C3—C41.8 (8)C9—C10—C11—C122.4 (8)
C1—C2—C3—Cl1−177.4 (4)C9—C10—C11—Cl2−179.1 (4)
C2—C3—C4—C5−1.6 (10)C10—C11—C12—C13−2.8 (8)
Cl1—C3—C4—C5177.5 (6)Cl2—C11—C12—C13178.8 (4)
C3—C4—C5—C6−0.3 (12)C11—C12—C13—C142.2 (8)
C2—C1—C6—C5−1.8 (9)C10—C9—C14—C130.9 (7)
N1—C1—C6—C5−179.4 (6)N2—C9—C14—C13179.8 (4)
C4—C5—C6—C12.0 (11)C12—C13—C14—C9−1.3 (7)
C1—N1—C7—O11.5 (8)C9—N2—C15—O2−1.2 (8)
C1—N1—C7—C8−179.1 (5)C9—N2—C15—C16−179.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.86 (2)2.00 (2)2.846 (5)166 (6)
N2—H2N···O10.830 (19)2.11 (2)2.927 (5)167 (6)

Symmetry codes: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2306).

References

  • Enraf–Nonius (1996). CAD-4-PC. Version 1.2. Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2631–o2632.
  • Gowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595–599.
  • Gowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3267.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Pies, W., Rager, H. & Weiss, A. (1971). Org. Mag. Reson.3, 147–176.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (1987). REDU4 Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography