PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o528.
Published online 2008 January 30. doi:  10.1107/S1600536808002705
PMCID: PMC2960351

1,4-Bis[2-(1,3-benzothia­zol-2-yl)phen­oxy]butane

Abstract

The mol­ecule of the title compound, C30H24N2O2S2, adopts a transoid conformation consistent with the inversion centre located at the mid-point of the central C—C single bond, resulting in one half mol­ecule in the asymmetric unit. The dihedral angle between the coplanar benzothia­zole ring system and the benzene ring is 11.06 (7)°. In the crystal structure, mol­ecules are linked by weak inter­molecular π–π inter­actions between thia­zole and benzene rings to form a three-dimensional network.

Related literature

For general background, see: Delmas et al. (2002 [triangle]); Karalı et al. (2004 [triangle]); Weinstock et al. (1987 [triangle]); Chopade et al. (2002 [triangle]); Di Nunno et al. (2000 [triangle]); Gökhan et al. (2004 [triangle]). For related structures, see: Sieroń et al. (1999 [triangle]); Usman et al. (2003 [triangle]). For related literature, see: Temel et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o528-scheme1.jpg

Experimental

Crystal data

  • C30H24N2O2S2
  • M r = 508.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o528-efi1.jpg
  • a = 14.3251 (13) Å
  • b = 4.8992 (3) Å
  • c = 17.4954 (17) Å
  • β = 102.522 (7)°
  • V = 1198.65 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 296 K
  • 0.80 × 0.36 × 0.08 mm

Data collection

  • Stoe IPDSII diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.442, T max = 0.936
  • 14397 measured reflections
  • 2339 independent reflections
  • 1456 reflections with I > 2σ(I)
  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.069
  • S = 0.84
  • 2339 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
The observed π–π interaction distances (Å) for the title compound.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808002705/hk2423sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002705/hk2423Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for use of the Stoe IPDSII diffractometer (purchased under grant No. F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Benzothiazole derivatives possess a broad spectrum of pharmacological activity, including antibacterial, antifungal (Delmas et al., 2002; Karalı et al., 2004), dopaminergic (Weinstock et al., 1987), anticonvulsant (Chopade et al., 2002), antiadrenergic (Di Nunno et al., 2000) and analgesic anti-inflammatory activities (Gökhan et al., 2004). We report herein the synthesis and structure of the title compound, (I), which is a new benzothiazole derivative.

The molecule of the title compound, (I), (Fig. 1) displays an inversion centre with a half molecule in the asymmetric unit. The benzene ring and its fused thiazole ring are nearly coplanar, with the maximum deviation from the least-squares plane through S1/N1/C1—C7 occurring at S1 [0.033 (9) Å]. However, the molecule itself is nonplanar; the dihedral angle between the coplanar benzothiazole ring system and benzene ring is 11.06 (7)°. The N1—C7 [1.299 (2) Å] bond indicates double-bond character, whereas the S—C bond lengths are indicative of significant single-bond character. The S1—C1 [1.7231 (19) Å] bond is shorter than S1—C7 [1.7552 (18) Å], due to the fact that C7 is sp2 hybridized, whereas C1 is part of the aromatic ring. A similar effect was observed for cis-bis(2-amino-1,3-benzothiazole-N3)bis- (formato-O,O')copper(II) [(II); Sieroń et al., 1999] and diacetatobis- (2-aminobenzothiazole)zinc(II) [(III); Usman et al., 2003]. The corresponding N—C and S—C values are [N1—C2 = 1.321 (3) Å, S1—C2 = 1.742 (3) Å and S1—C8 = 1.741 (3) Å, in (II)] and [N1—C1 = 1.311 (3) Å, N3—C8 = 1.317 (3) Å, S1—C1 = 1.747 (2) Å, S1—C2 = 1.733 (3) Å, S2—C8 = 1.751 (2) Å and S2—C9 = 1.749 (3) Å, in (III)].

In the crystal structure, the molecules are linked by weak intermolecular π···π interactions (Table 1) between thiazole and benzene rings to form a three-dimensional network (Fig. 2).

Experimental

The title compound, (I), was prepared by the literature method (Temel et al., 2008). It was obtained from the photochemical reaction of M(CO)5 THF (M= Cr) (132 mg, 0.5 mmol) with N,N'-bis(2-aminothiophenol)-1,4-bis(2-carboxaldehyde- phenoxy) butane (153 mg, 0.3 mmol) in THF for 2 h at room temperature. UV irradiation was performed with a medium-pressure (125 W) mercury lamp through a quartz-walled immersion well reactor, which was cooled by circulating water. After the photochemical reaction, the solvent was removed under vacuum afford a solid residue which was dissolved in CH2Cl2 and then petroleum ether was added for the purification process. The solution was allowed to cool in a deep-freezer. Small colorless crystals grown in the CH2Cl2 /petroleum ether solution were filtered off and finally dried.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (i) -x, -y, -z].
Fig. 2.
A partial packing diagram of (I), showing the π···π bonds (drawn as dashed lines) [symmetry code: (i) x, 1 + y, z].

Crystal data

C30H24N2O2S2F000 = 532
Mr = 508.63Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14397 reflections
a = 14.3251 (13) Åθ = 1.7–28.0º
b = 4.8992 (3) ŵ = 0.26 mm1
c = 17.4954 (17) ÅT = 296 K
β = 102.522 (7)ºThin long plate, colorless
V = 1198.65 (18) Å30.80 × 0.36 × 0.08 mm
Z = 2

Data collection

Stoe IPDSII diffractometer2339 independent reflections
Radiation source: fine-focus sealed tube1456 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.075
Detector resolution: 6.67 pixels mm-1θmax = 26.0º
T = 296 Kθmin = 2.4º
ω scansh = −16→17
Absorption correction: integration(X-RED32; Stoe & Cie, 2002)k = −6→6
Tmin = 0.442, Tmax = 0.936l = −21→21
14397 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.069  w = 1/[σ2(Fo2) + (0.0302P)2] where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max = 0.001
2339 reflectionsΔρmax = 0.14 e Å3
163 parametersΔρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. 322 frames, detector distance = 100 mm
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.15719 (4)0.95193 (10)0.66141 (3)0.05013 (15)
O10.18060 (9)0.6078 (3)0.54404 (7)0.0548 (4)
N10.33188 (11)1.0657 (3)0.72790 (8)0.0474 (4)
C10.17643 (14)1.1896 (4)0.73578 (10)0.0449 (5)
C20.11011 (15)1.3333 (4)0.76826 (11)0.0558 (5)
H20.04481.30570.75060.067*
C30.14437 (17)1.5159 (4)0.82685 (12)0.0610 (6)
H30.10151.61240.84950.073*
C40.24200 (17)1.5602 (4)0.85322 (11)0.0593 (5)
H40.26341.68830.89230.071*
C50.30670 (15)1.4168 (4)0.82207 (11)0.0546 (5)
H50.37191.44530.84020.066*
C60.27417 (14)1.2284 (4)0.76311 (10)0.0454 (5)
C70.28134 (13)0.9108 (4)0.67424 (10)0.0420 (4)
C80.32640 (13)0.7109 (4)0.63100 (10)0.0421 (4)
C90.42400 (14)0.6654 (4)0.65603 (11)0.0524 (5)
H90.45820.76340.69850.063*
C100.47127 (14)0.4785 (4)0.61944 (12)0.0596 (6)
H100.53650.44960.63750.071*
C110.42174 (16)0.3352 (4)0.55621 (12)0.0599 (6)
H110.45370.21110.53080.072*
C120.32498 (16)0.3741 (4)0.53009 (11)0.0545 (5)
H120.29170.27540.48740.065*
C130.27700 (13)0.5594 (4)0.56711 (10)0.0453 (4)
C140.12712 (14)0.4466 (4)0.48140 (10)0.0518 (5)
H14A0.13210.25460.49530.062*
H14B0.15170.47220.43440.062*
C150.02453 (14)0.5376 (4)0.46736 (11)0.0556 (5)
H15A−0.01040.45650.41900.067*
H15B0.02210.73420.46070.067*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0431 (3)0.0516 (3)0.0532 (3)−0.0016 (3)0.0050 (2)−0.0062 (2)
O10.0427 (8)0.0624 (9)0.0539 (8)0.0000 (6)−0.0010 (6)−0.0175 (7)
N10.0471 (10)0.0445 (9)0.0480 (9)−0.0022 (8)0.0044 (7)−0.0040 (8)
C10.0494 (13)0.0390 (11)0.0462 (11)−0.0003 (9)0.0103 (9)0.0044 (8)
C20.0520 (13)0.0539 (13)0.0614 (13)0.0044 (10)0.0122 (10)−0.0004 (10)
C30.0730 (16)0.0560 (14)0.0575 (12)0.0126 (11)0.0215 (10)−0.0008 (10)
C40.0809 (17)0.0459 (11)0.0496 (11)0.0013 (12)0.0104 (11)−0.0067 (10)
C50.0599 (14)0.0488 (12)0.0516 (11)−0.0042 (10)0.0041 (9)−0.0043 (10)
C60.0525 (13)0.0387 (11)0.0426 (10)−0.0012 (9)0.0053 (9)0.0018 (8)
C70.0425 (11)0.0426 (11)0.0392 (9)−0.0024 (9)0.0053 (8)0.0031 (8)
C80.0421 (12)0.0410 (11)0.0421 (10)−0.0013 (9)0.0065 (8)0.0019 (8)
C90.0444 (12)0.0537 (12)0.0557 (12)−0.0011 (10)0.0034 (9)−0.0036 (9)
C100.0443 (12)0.0659 (15)0.0670 (13)0.0061 (11)0.0087 (10)−0.0047 (11)
C110.0583 (15)0.0610 (14)0.0635 (13)0.0095 (11)0.0197 (11)−0.0063 (11)
C120.0565 (14)0.0574 (13)0.0483 (11)−0.0001 (10)0.0087 (9)−0.0087 (9)
C130.0425 (12)0.0474 (11)0.0446 (10)0.0007 (9)0.0060 (8)0.0021 (9)
C140.0518 (12)0.0559 (12)0.0440 (10)−0.0085 (10)0.0024 (8)−0.0065 (9)
C150.0510 (13)0.0652 (13)0.0452 (11)−0.0105 (10)−0.0012 (8)0.0023 (10)

Geometric parameters (Å, °)

C1—S11.7231 (19)C9—C101.376 (3)
C1—C21.398 (3)C9—H90.9300
C1—C61.391 (3)C10—C111.371 (3)
C2—C31.369 (3)C10—H100.9300
C2—H20.9300C11—C121.375 (3)
C3—C41.391 (3)C11—H110.9300
C3—H30.9300C12—C131.382 (3)
C4—C51.367 (3)C12—H120.9300
C4—H40.9300C13—O11.373 (2)
C5—C61.387 (3)C14—O11.431 (2)
C5—H50.9300C14—C151.504 (3)
C6—N11.385 (2)C14—H14A0.9700
C7—S11.7552 (18)C14—H14B0.9700
C7—N11.299 (2)C15—C15i1.511 (4)
C7—C81.469 (2)C15—H15A0.9700
C8—C91.390 (3)C15—H15B0.9700
C8—C131.399 (2)
C6—C1—C2120.89 (18)C11—C10—C9119.68 (19)
C6—C1—S1109.65 (14)C11—C10—H10120.2
C2—C1—S1129.46 (16)C9—C10—H10120.2
C3—C2—C1117.9 (2)C10—C11—C12120.33 (19)
C3—C2—H2121.0C10—C11—H11119.8
C1—C2—H2121.0C12—C11—H11119.8
C2—C3—C4121.45 (19)C11—C12—C13120.22 (19)
C2—C3—H3119.3C11—C12—H12119.9
C4—C3—H3119.3C13—C12—H12119.9
C5—C4—C3120.5 (2)O1—C13—C12123.13 (17)
C5—C4—H4119.8O1—C13—C8116.46 (16)
C3—C4—H4119.8C12—C13—C8120.41 (18)
C4—C5—C6119.4 (2)O1—C14—C15107.66 (15)
C4—C5—H5120.3O1—C14—H14A110.2
C6—C5—H5120.3C15—C14—H14A110.2
N1—C6—C5125.23 (18)O1—C14—H14B110.2
N1—C6—C1114.94 (16)C15—C14—H14B110.2
C5—C6—C1119.82 (18)H14A—C14—H14B108.5
N1—C7—C8121.55 (17)C14—C15—C15i113.7 (2)
N1—C7—S1114.57 (13)C14—C15—H15A108.8
C8—C7—S1123.83 (13)C15i—C15—H15A108.8
C9—C8—C13117.81 (17)C14—C15—H15B108.8
C9—C8—C7117.97 (16)C15i—C15—H15B108.8
C13—C8—C7124.20 (17)H15A—C15—H15B107.7
C10—C9—C8121.54 (18)C7—N1—C6111.40 (16)
C10—C9—H9119.2C13—O1—C14117.86 (14)
C8—C9—H9119.2C1—S1—C789.39 (9)
C6—C1—C2—C30.9 (3)C10—C11—C12—C130.4 (3)
S1—C1—C2—C3−179.08 (15)C11—C12—C13—O1−179.97 (18)
C1—C2—C3—C40.5 (3)C11—C12—C13—C80.6 (3)
C2—C3—C4—C5−1.4 (3)C9—C8—C13—O1179.64 (16)
C3—C4—C5—C60.8 (3)C7—C8—C13—O10.9 (3)
C4—C5—C6—N1−178.41 (18)C9—C8—C13—C12−0.9 (3)
C4—C5—C6—C10.7 (3)C7—C8—C13—C12−179.58 (17)
C2—C1—C6—N1177.62 (16)O1—C14—C15—C15i−69.4 (3)
S1—C1—C6—N1−2.4 (2)C8—C7—N1—C6−177.23 (15)
C2—C1—C6—C5−1.6 (3)S1—C7—N1—C60.4 (2)
S1—C1—C6—C5178.43 (14)C5—C6—N1—C7−179.52 (17)
N1—C7—C8—C98.4 (3)C1—C6—N1—C71.3 (2)
S1—C7—C8—C9−168.92 (14)C12—C13—O1—C143.6 (3)
N1—C7—C8—C13−172.87 (18)C8—C13—O1—C14−176.95 (16)
S1—C7—C8—C139.8 (2)C15—C14—O1—C13179.99 (15)
C13—C8—C9—C100.2 (3)C6—C1—S1—C72.04 (14)
C7—C8—C9—C10179.00 (18)C2—C1—S1—C7−177.94 (18)
C8—C9—C10—C110.8 (3)N1—C7—S1—C1−1.44 (14)
C9—C10—C11—C12−1.1 (3)C8—C7—S1—C1176.08 (15)

Symmetry codes: (i) −x, −y+1, −z+1.

Table 1 The observed 'π···π' interaction distances (Å) for the title compound.

Cg-Cgidcentroidsdperpendicular
Cg1-Cg2i3.775 (11)3.515
Cg1-Cg3i3.7934 (12)3.59

Cg1, Cg2 and Cg3 are the centroids of atoms S1/N1/C1/C6/C7, (C1–C6) and (C8–C13) rings, respectively. Symmetry code: (i) x, 1+y, z

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2423).

References

  • Chopade, R. S., Bahekar, R. H., Khedekar, P. B., Bhusari, K. P. & Rao, A. R. R. (2002). Arch. Pharm.335, 381–388. [PubMed]
  • Delmas, F., Di Giorgio, C., Robin, M., Azas, N., Gasquet, M., Detang, C., Costa, M., Timon-David, P. & Galy, J. P. (2002). Antimicrob. Agents Chemother.46, 2588–2594. [PMC free article] [PubMed]
  • Di Nunno, L., Franchini, C., Scilimati, A., Sinicropi, M. S. & Tortorella, P. (2000). Tetrahedron Asymmetry, 11, 1571–1583.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gökhan, N., Aktay, G. & Erdoğan, H. (2004). Turk. J. Chem.28, 123–132.
  • Karalı, N., Cesur, N., Gürsoy, A., Ateş, O., Özden, S., Otuk, G. & Birteksöz, S. (2004). Indian J. Chem.B43, 212–216.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sieroń, L. & Bukowska-Strżyzewska, M. (1999). Acta Cryst. C55, 167–169.
  • Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
  • Temel, H., Alp, H., İlhan, S. & Ziyadanoğulları, B. (2008). J. Coord. Chem. In the press.
  • Usman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41–m43.
  • Weinstock, J., Gaitanopoulos, D. E., Stringer, O. D., Franz, R. G., Hieble, J. P., Kinter, L. B., Mann, W. A., Flaim, K. E. & Gessner, G. (1987). J. Med. Chem.30, 1166–1176. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography