PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o399.
Published online 2008 January 9. doi:  10.1107/S1600536807063660
PMCID: PMC2960339

Norbornane-exo-cis-2,3-diyl 1′,2′-phenyl­ene orthocarbonate

Abstract

The title compound (systematic name: 4,7-methano-2,2′-spirobi­[1,3-benzodioxole]), C14H14O4, is an asymmetric spiro ester of orthocarbonic acid and two diols, viz. the aromatic benzene-1,2-diol and the aliphatic vicinal norbornane-exo-cis-2,3-diol. The orthocarbonate mol­ecule is close to having non-crystallographic C s symmetry. The five-membered ring stemming from the aliphatic diol has an envelope conformation. C—O bonds including the spiro-C atom span an approximately 0.07 Å range, but are within 0.02 Å of the respective distances in a density functional theory calculation, i.e. the distance difference is not caused by packing forces. Accordingly, the crystal packing is characterized by weak C—H(...)O and C—H(...)π inter­actions.

Related literature

For the synthesis of the title compound, see: Komatsu et al. (1992 [triangle]). For related compounds, see: Betz & Klüfers (2007a [triangle],b [triangle],c [triangle]); Betz et al. (2007 [triangle]). Density functional theory calculations were performed by Betz & Klüfers (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o399-scheme1.jpg

Experimental

Crystal data

  • C14H14O4
  • M r = 246.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o399-efi1.jpg
  • a = 7.9125 (3) Å
  • b = 9.5545 (5) Å
  • c = 15.2813 (6) Å
  • β = 101.490 (3)°
  • V = 1132.11 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 200 (2) K
  • 0.30 × 0.25 × 0.16 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 8399 measured reflections
  • 2582 independent reflections
  • 1716 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.119
  • S = 1.05
  • 2582 reflections
  • 164 parameters
  • Only H-atom displacement parameters refined
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: COLLECT (Nonius, 2004 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]; 2006 version).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807063660/lx2027sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063660/lx2027Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Moritz Reichvilser for professional support.

supplementary crystallographic information

Comment

The title compound was prepared in order to compare its NMR-spectroscopic data with those of related silicon compounds.

In the molecule, a central carbon atom is chelated by a phenylene-1,2-dioxy and a norbornylene-exo-cis-2,3-dioxy moiety. The C—O bond lengths differ markedly (1.37 to 1.44 Å). About the same bond-length values were computed for the isolated molecule on the B3LYP/6–31+G(d,p) level of theory thus ruling out packing forces as the origin of the bond-length differences. The five-membered chelate ring stemming from the aliphatic diol adopts an envelope conformation on the spiro center C1 (puckering parameters: Q2 = 0.1274 (16) Å, [var phi]2 = 42.6 (7)° for the O1—C1—O2—C4—C3 ring).

Accordingly, the crystal packing is characterized by weak C—H···X interactions whose H···X distances are close to the sum of the van-der-Waals radii (vdWr). In terms of the vdWr criterion, the shortest tabulated hydrogen-bond, the C14—H14···O2 interaction, is 0.11 \&A shorter than the radii sum. The weak interactions in (I) are thus less significant than those in the related 1-(ylomethyl)cyclopentyl 1',2'-phenylene orthocarbonate, where C—H···O bonds are observed at the radii sum minus 0.35 Å (Betz & Klüfers, 2007c). Fig. 2 shows this interaction as well as the shortest C—H···π bond which has one of the norbornane-bridgehead C—H functions as the donor. The other bridgehead methylidyne function acts as a donor in a still weaker bond. Moreover, another weak C—H···O bond may be recognized with a diol-CH function as the donor (see the hydrogen bond table).

Experimental

The title compound was prepared based on a published procedure (Komatsu et al., 1992) upon reaction of norbornane-exo-cis-2,3-diol with 2,2-dichlorobenzo[1.3]dioxol in dichloromethane in the presence of pyridine. Crystals suitable for X-ray analysis were obtained after recrystallization from boiling ethyl acetate.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H distances of 0.95, 0.99 and 1.00 Å, and with Uiso(H) = 1.2Ueq(C) for all H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
The crystal packing viewed along [0 1 0]. Green arrows: the strongest C—H···O interaction in terms of the H···O distance (C14—H14···O2). Green dotted lines: the strongest ...

Crystal data

C14H14O4F000 = 520
Mr = 246.25Dx = 1.445 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 14429 reflections
a = 7.9125 (3) Åθ = 2.7–27.5º
b = 9.5545 (5) ŵ = 0.11 mm1
c = 15.2813 (6) ÅT = 200 (2) K
β = 101.490 (3)ºBlock, colourless
V = 1132.11 (9) Å30.30 × 0.25 × 0.16 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer1716 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.054
Monochromator: MONTEL, graded multilayered X-ray opticsθmax = 27.5º
T = 200(2) Kθmin = 3.2º
CCD; rotation images; thick slices scansh = −9→10
Absorption correction: nonek = −12→11
8399 measured reflectionsl = −19→19
2582 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044Only H-atom displacement parameters refined
wR(F2) = 0.119  w = 1/[σ2(Fo2) + (0.0569P)2 + 0.1349P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2582 reflectionsΔρmax = 0.21 e Å3
164 parametersΔρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.39573 (14)0.24072 (14)0.47478 (7)0.0460 (3)
O20.51722 (14)0.20489 (14)0.35623 (7)0.0463 (3)
O30.27667 (13)0.34038 (12)0.34119 (7)0.0408 (3)
O40.25466 (14)0.10405 (11)0.35921 (8)0.0441 (3)
C10.3646 (2)0.22289 (18)0.38424 (11)0.0384 (4)
C20.67414 (19)0.32183 (17)0.56079 (10)0.0333 (4)
H20.61610.37660.60220.0490 (13)*
C30.56971 (19)0.20081 (17)0.51341 (10)0.0342 (4)
H30.57420.11650.55260.0490 (13)*
C40.65286 (19)0.17354 (18)0.43193 (10)0.0368 (4)
H40.69640.07550.43050.0490 (13)*
C50.7973 (2)0.28116 (18)0.44257 (11)0.0378 (4)
H50.84070.30250.38690.0490 (13)*
C60.9350 (2)0.2320 (2)0.52188 (12)0.0458 (5)
H6A1.04330.28570.52590.0490 (13)*
H6B0.96000.13100.51710.0490 (13)*
C70.8509 (2)0.26146 (19)0.60315 (11)0.0439 (4)
H7A0.83870.17430.63640.0490 (13)*
H7B0.91960.32980.64430.0490 (13)*
C80.7165 (2)0.40464 (17)0.48246 (10)0.0384 (4)
H8A0.61230.44120.44200.0490 (13)*
H8B0.79950.48140.50180.0490 (13)*
C90.12113 (18)0.29423 (16)0.29208 (9)0.0307 (4)
C100.10837 (18)0.15188 (16)0.30274 (9)0.0307 (4)
C11−0.03269 (19)0.07732 (17)0.26098 (10)0.0365 (4)
H11−0.0406−0.02110.26810.0490 (13)*
C12−0.16353 (19)0.15365 (18)0.20764 (10)0.0367 (4)
H12−0.26430.10640.17780.0490 (13)*
C13−0.1506 (2)0.29664 (18)0.19700 (10)0.0375 (4)
H13−0.24260.34540.16000.0490 (13)*
C14−0.0054 (2)0.37112 (17)0.23937 (10)0.0350 (4)
H140.00490.46930.23200.0490 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0254 (6)0.0743 (9)0.0367 (7)0.0025 (5)0.0027 (5)−0.0082 (6)
O20.0296 (6)0.0719 (9)0.0354 (6)0.0024 (6)0.0016 (5)−0.0142 (6)
O30.0331 (6)0.0367 (7)0.0486 (7)−0.0050 (5)−0.0018 (5)−0.0036 (5)
O40.0333 (6)0.0351 (7)0.0556 (7)0.0031 (5)−0.0107 (5)0.0028 (5)
C10.0293 (9)0.0449 (10)0.0388 (9)0.0000 (7)0.0014 (7)−0.0057 (7)
C20.0337 (8)0.0357 (9)0.0301 (8)0.0013 (7)0.0053 (6)−0.0024 (6)
C30.0283 (8)0.0362 (9)0.0369 (8)−0.0013 (6)0.0034 (6)0.0023 (7)
C40.0305 (8)0.0389 (9)0.0389 (9)0.0032 (7)0.0016 (6)−0.0092 (7)
C50.0297 (8)0.0489 (10)0.0358 (9)−0.0022 (7)0.0089 (6)−0.0042 (7)
C60.0283 (9)0.0509 (11)0.0552 (11)0.0031 (7)0.0015 (7)−0.0084 (8)
C70.0365 (9)0.0506 (11)0.0401 (10)−0.0041 (8)−0.0031 (7)0.0004 (8)
C80.0419 (9)0.0320 (9)0.0419 (9)−0.0018 (7)0.0096 (7)0.0023 (7)
C90.0267 (8)0.0362 (9)0.0293 (8)−0.0017 (6)0.0059 (6)−0.0036 (6)
C100.0261 (8)0.0336 (9)0.0315 (8)0.0037 (6)0.0033 (6)0.0010 (6)
C110.0320 (8)0.0335 (9)0.0432 (9)−0.0027 (7)0.0057 (6)−0.0007 (7)
C120.0261 (8)0.0478 (11)0.0351 (8)−0.0012 (7)0.0030 (6)−0.0050 (7)
C130.0318 (8)0.0468 (11)0.0326 (8)0.0083 (7)0.0035 (6)0.0031 (7)
C140.0388 (9)0.0328 (9)0.0346 (8)0.0043 (7)0.0102 (7)0.0046 (7)

Geometric parameters (Å, °)

O1—C11.367 (2)C5—H51.0000
O1—C31.438 (2)C6—C71.547 (3)
O2—C11.370 (2)C6—H6A0.9900
O2—C41.444 (2)C6—H6B0.9900
O3—C91.380 (2)C7—H7A0.9900
O3—C11.412 (2)C7—H7B0.9900
O4—C101.377 (2)C8—H8A0.9900
O4—C11.435 (2)C8—H8B0.9900
C2—C31.518 (2)C9—C141.367 (2)
C2—C81.527 (2)C9—C101.376 (2)
C2—C71.532 (2)C10—C111.370 (2)
C2—H21.0000C11—C121.390 (2)
C3—C41.542 (2)C11—H110.9500
C3—H31.0000C12—C131.382 (2)
C4—C51.522 (2)C12—H120.9500
C4—H41.0000C13—C141.396 (2)
C5—C81.526 (2)C13—H130.9500
C5—C61.533 (2)C14—H140.9500
C1—O1—C3110.32 (12)C5—C6—H6A111.1
C1—O2—C4109.66 (12)C7—C6—H6A111.1
C9—O3—C1107.62 (12)C5—C6—H6B111.1
C10—O4—C1107.09 (12)C7—C6—H6B111.1
O1—C1—O2109.88 (12)H6A—C6—H6B109.1
O1—C1—O3110.18 (13)C2—C7—C6103.41 (13)
O2—C1—O3109.73 (14)C2—C7—H7A111.1
O1—C1—O4110.22 (14)C6—C7—H7A111.1
O2—C1—O4110.04 (13)C2—C7—H7B111.1
O3—C1—O4106.75 (11)C6—C7—H7B111.1
C3—C2—C8101.79 (12)H7A—C7—H7B109.0
C3—C2—C7106.20 (13)C5—C8—C295.02 (13)
C8—C2—C7101.65 (13)C5—C8—H8A112.7
C3—C2—H2115.2C2—C8—H8A112.7
C8—C2—H2115.2C5—C8—H8B112.7
C7—C2—H2115.2C2—C8—H8B112.7
O1—C3—C2112.31 (13)H8A—C8—H8B110.2
O1—C3—C4103.94 (12)C14—C9—C10122.58 (14)
C2—C3—C4103.56 (12)C14—C9—O3128.15 (15)
O1—C3—H3112.1C10—C9—O3109.27 (13)
C2—C3—H3112.1C11—C10—C9122.08 (14)
C4—C3—H3112.1C11—C10—O4128.66 (14)
O2—C4—C5111.59 (13)C9—C10—O4109.27 (12)
O2—C4—C3104.08 (12)C10—C11—C12116.29 (15)
C5—C4—C3103.40 (12)C10—C11—H11121.9
O2—C4—H4112.4C12—C11—H11121.9
C5—C4—H4112.4C13—C12—C11121.58 (14)
C3—C4—H4112.4C13—C12—H12119.2
C4—C5—C8101.52 (13)C11—C12—H12119.2
C4—C5—C6106.13 (14)C12—C13—C14121.51 (14)
C8—C5—C6102.10 (13)C12—C13—H13119.2
C4—C5—H5115.1C14—C13—H13119.2
C8—C5—H5115.1C9—C14—C13115.96 (15)
C6—C5—H5115.1C9—C14—H14122.0
C5—C6—C7103.11 (13)C13—C14—H14122.0
C3—O1—C1—O2−14.26 (19)O2—C4—C5—C6−177.46 (13)
C3—O1—C1—O3−135.27 (13)C3—C4—C5—C671.25 (15)
C3—O1—C1—O4107.18 (14)C4—C5—C6—C7−72.05 (16)
C4—O2—C1—O115.22 (19)C8—C5—C6—C733.89 (17)
C4—O2—C1—O3136.51 (13)C3—C2—C7—C670.90 (16)
C4—O2—C1—O4−106.32 (14)C8—C2—C7—C6−35.19 (16)
C9—O3—C1—O1−119.98 (13)C5—C6—C7—C20.83 (17)
C9—O3—C1—O2118.91 (13)C4—C5—C8—C254.90 (14)
C9—O3—C1—O4−0.31 (16)C6—C5—C8—C2−54.59 (14)
C10—O4—C1—O1120.17 (13)C3—C2—C8—C5−54.54 (14)
C10—O4—C1—O2−118.49 (14)C7—C2—C8—C554.98 (14)
C10—O4—C1—O30.52 (17)C1—O3—C9—C14−179.57 (15)
C1—O1—C3—C2118.72 (15)C1—O3—C9—C10−0.02 (16)
C1—O1—C3—C47.43 (17)C14—C9—C10—C110.0 (2)
C8—C2—C3—O1−77.54 (15)O3—C9—C10—C11−179.53 (14)
C7—C2—C3—O1176.46 (13)C14—C9—C10—O4179.94 (14)
C8—C2—C3—C433.98 (15)O3—C9—C10—O40.36 (17)
C7—C2—C3—C4−72.02 (14)C1—O4—C10—C11179.34 (16)
C1—O2—C4—C5−120.76 (14)C1—O4—C10—C9−0.54 (17)
C1—O2—C4—C3−9.90 (17)C9—C10—C11—C12−0.6 (2)
O1—C3—C4—O21.48 (16)O4—C10—C11—C12179.57 (14)
C2—C3—C4—O2−116.04 (13)C10—C11—C12—C130.5 (2)
O1—C3—C4—C5118.21 (13)C11—C12—C13—C140.0 (2)
C2—C3—C4—C50.68 (15)C10—C9—C14—C130.5 (2)
O2—C4—C5—C876.19 (15)O3—C9—C14—C13179.99 (14)
C3—C4—C5—C8−35.11 (15)C12—C13—C14—C9−0.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O4i1.002.713.623 (2)151
C7—H7A···O4i0.992.763.663 (2)151
C14—H14···O2ii0.952.613.501 (2)156
C14—H14···O4ii0.952.883.514 (2)125
C2—H2···Cgiii1.002.863.563 (2)128
C5—H5···Cgiv1.002.663.568 (2)152

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x−1/2, −y−1/2, z−1/2; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2027).

References

  • Betz, R., Jahn, N. & Klüfers, P. (2007). Acta Cryst. E63, o4152.
  • Betz, R. & Klüfers, P. (2007a). Acta Cryst. E63, o3933.
  • Betz, R. & Klüfers, P. (2007b). Acta Cryst. E63, o4132.
  • Betz, R. & Klüfers, P. (2007c). Acta Cryst. E63, o4300.
  • Betz, R. & Klüfers, P. (2008). Unpublished results.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Komatsu, S., Takata, T. & Endo, T. (1992). Macromolecules, 25, 7286–7293.
  • Nonius (2004). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography