PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o442.
Published online 2008 January 16. doi:  10.1107/S1600536808000974
PMCID: PMC2960338

3,6-Dihydr­oxy-2′-[(2-hydr­oxy-1-naphth­yl)methyl­eneamino]xanthene-9-spiro-1′-isoindolin-3′-one acetonitrile solvate

Abstract

The title compound, C31H20N2O5·C2H3N, was synthesized by the reaction of fluorescein hydrazide and excess 2-hydr­oxy-1-naphthaldehyde in acetonitrile. The spirolactam ring is planar and is nearly at right angles to the two benzene rings of the xanthene system. The dihedral angle between the two benzene rings of the xanthene system is 9.92 (4)°. In the crystal structure, the mol­ecules are linked into extended two-dimensional networks by inter­molecular hydrogen bonding. Acetonitrile mol­ecules are located in the voids between the two-dimensional networks.

Related literature

For general background, see: Chen et al., (2006 [triangle]). For related literature, see: Wu et al., (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o442-scheme1.jpg

Experimental

Crystal data

  • C31H20N2O5·C2H3N
  • M r = 541.54
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o442-efi1.jpg
  • a = 18.729 (5) Å
  • b = 15.572 (4) Å
  • c = 9.021 (2) Å
  • β = 98.495 (4)°
  • V = 2601.9 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 (2) K
  • 0.26 × 0.22 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.976, T max = 0.985
  • 12963 measured reflections
  • 4627 independent reflections
  • 3272 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.098
  • S = 1.03
  • 4627 reflections
  • 375 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT-Plus (Bruker, 1997 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Bruker, 2000 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808000974/at2535sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000974/at2535Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Project No. 20775003) and the Natural Science Foundation of the Education Committee of Anhui Province, China (Project No. 2002 K J201).

supplementary crystallographic information

Comment

Fluorescein dyes have been used extensively for conjugation with biomolecules, owing to their excellent fluorescence properties. A few Fluorescein have also been used as fluorescent chemosensors for metal ions. It was reported that rhodamine B hydrazide could be used as a fluorescent probe for Cu2+(Chen et al., 2006). In addition, Fluorescein-based fluorescent chemosensors have received increasing interest in recent years by virtue of their long-wavelength emission and availability. In our previous research using 2-pyridinecarbaldehyde and rhodamine 6 G hydrazide synthesized probe (Wu et al., 2007). The structures are similar with rhodamine 6 G hydrazone probe and fluorescein hydrazone probe. As an extension of our work on this series of complexes, we herein report the crystal structure of the title comound.

The asymmetric unit contains one organic molecule and one acetonitriler molecule. The benzene ring of phenol deviates only slightly from planarity with a dihedral angle of 9.12 (3)°. The water O atom acts as a hydrogen bond acceptor and donor from the hydroxy group in a neighouring organic molecule, thereby forming extended 2-D networks (Table1, Fig. 2). Acetonitrile molecules are located in the voids between the two-dimensional networks.

Experimental

Briefly, to a suspended solution of fluorescein (300 mg, 0.9 mmol) in CH3OH (15 ml), an excess of hydrazine hydrate (1.2 ml, 36 mmol) was added, and the reaction mixture was refluxed for 5 h with stirring. The resulting clear orange solution was evaporated in vacuo to give a brown oil, which was then recrystallized from ethanol–water, affording 1 as a light orange crystal (230 mg, yield 70%). Fluorescein hydrazide (0.46 g, 1 mmol) was dissolved in 20 ml absolute acetonitrile. An excessive 2-hydroxy-1-naphthaldehyde (4 mmol) was added then the mixture was refluxed in an air bath for 6 h. After that, the solution was cooled and allowed to stand at room temperature overnight. The yellow single-crystal which appeared after ten days was growed.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 - 0.96 Å and O—H = 0.82 Å), and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C or O).

Figures

Fig. 1.
The asymmetric unit, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C31H20N2O5·C2H3NF000 = 1128
Mr = 541.54Dx = 1.382 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4034 reflections
a = 18.729 (5) Åθ = 2.4–27.0º
b = 15.572 (4) ŵ = 0.10 mm1
c = 9.021 (2) ÅT = 293 (2) K
β = 98.495 (4)ºBlock, yellow
V = 2601.9 (11) Å30.26 × 0.22 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer4627 independent reflections
Radiation source: sealed tube3272 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.047
T = 293(2) Kθmax = 25.1º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 2000)h = −22→20
Tmin = 0.976, Tmax = 0.985k = −17→18
12963 measured reflectionsl = −10→10

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037  w = 1/[σ2(Fo2) + (0.0455P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.14 e Å3
4627 reflectionsΔρmin = −0.15 e Å3
375 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (7)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.33564 (7)0.42174 (9)0.79315 (17)0.0395 (4)
C20.35217 (9)0.33479 (10)0.7884 (2)0.0545 (4)
H20.32720.30110.71280.065*
C30.40416 (9)0.29689 (10)0.8916 (2)0.0574 (5)
H70.41370.23850.88610.069*
C40.44199 (8)0.34666 (10)1.00373 (18)0.0457 (4)
C50.42780 (8)0.43291 (9)1.01071 (17)0.0425 (4)
H50.45360.46671.08510.051*
C60.37473 (7)0.46933 (9)0.90608 (16)0.0394 (4)
C70.31973 (8)0.59927 (9)0.81305 (17)0.0419 (4)
C80.32082 (8)0.68757 (10)0.82713 (18)0.0480 (4)
H80.34940.71350.90780.058*
C90.27929 (8)0.73684 (10)0.72100 (19)0.0479 (4)
C100.23642 (8)0.69775 (10)0.60184 (19)0.0533 (4)
H100.20830.73080.52970.064*
C110.23580 (8)0.60990 (10)0.59104 (19)0.0504 (4)
H110.20670.58420.51080.060*
C120.27727 (7)0.55775 (9)0.69603 (17)0.0405 (4)
C130.27427 (7)0.46102 (9)0.68603 (16)0.0396 (4)
C140.26945 (8)0.42604 (9)0.52772 (17)0.0437 (4)
C150.31751 (9)0.43535 (11)0.4270 (2)0.0594 (5)
H150.36010.46620.45210.071*
C160.30051 (11)0.39730 (12)0.2870 (2)0.0693 (5)
H160.33180.40390.21690.083*
C170.23812 (11)0.34980 (12)0.2495 (2)0.0635 (5)
H170.22840.32430.15550.076*
C180.19056 (9)0.34007 (10)0.34988 (18)0.0548 (4)
H180.14860.30790.32560.066*
C190.20660 (8)0.37939 (9)0.48858 (17)0.0436 (4)
C200.16357 (8)0.38148 (10)0.61280 (17)0.0448 (4)
C210.13128 (7)0.42358 (9)0.91136 (17)0.0408 (4)
H210.10840.37530.86590.049*
C220.10663 (7)0.46010 (9)1.04201 (16)0.0396 (4)
C230.13326 (8)0.53795 (10)1.10112 (17)0.0462 (4)
C240.10413 (10)0.57803 (12)1.21788 (19)0.0598 (5)
H240.12200.63091.25400.072*
C250.05010 (10)0.54010 (13)1.27822 (19)0.0622 (5)
H250.03080.56791.35440.075*
C260.02242 (8)0.45900 (11)1.22770 (18)0.0518 (4)
C27−0.03305 (9)0.41847 (14)1.2928 (2)0.0682 (5)
H27−0.05260.44621.36890.082*
C28−0.05798 (11)0.34026 (15)1.2463 (2)0.0771 (6)
H28−0.09450.31431.29000.093*
C29−0.02859 (9)0.29812 (13)1.1316 (2)0.0708 (5)
H29−0.04520.24371.10100.085*
C300.02372 (8)0.33577 (11)1.06483 (19)0.0548 (4)
H300.04210.30690.98840.066*
C310.05084 (7)0.41780 (10)1.10902 (17)0.0431 (4)
C320.54315 (12)0.38827 (12)0.6728 (2)0.0826 (6)
H32A0.59300.39550.71410.124*
H32B0.52650.33360.70280.124*
H32C0.51510.43320.70870.124*
C330.53548 (10)0.39211 (12)0.5109 (3)0.0678 (5)
N10.18474 (6)0.45736 (8)0.85739 (13)0.0403 (3)
N20.20397 (6)0.42793 (7)0.72513 (13)0.0404 (3)
N30.52922 (10)0.39621 (12)0.3840 (2)0.0900 (6)
O10.28347 (6)0.82387 (7)0.73845 (14)0.0670 (4)
H10.25420.84700.67430.100*
O20.36425 (6)0.55596 (6)0.92433 (12)0.0537 (3)
O30.49339 (6)0.30663 (7)1.10332 (14)0.0644 (4)
H60.50670.33891.17380.097*
O40.18721 (6)0.58052 (7)1.04607 (13)0.0589 (3)
H40.19920.55330.97590.088*
O50.10443 (6)0.35036 (8)0.61789 (13)0.0678 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0349 (8)0.0383 (9)0.0458 (9)−0.0024 (6)0.0074 (7)0.0024 (7)
C20.0552 (10)0.0407 (10)0.0634 (11)−0.0034 (8)−0.0047 (9)−0.0041 (8)
C30.0630 (11)0.0349 (9)0.0695 (12)0.0048 (8)−0.0057 (9)−0.0008 (8)
C40.0447 (9)0.0421 (9)0.0497 (10)0.0035 (7)0.0053 (8)0.0050 (7)
C50.0452 (9)0.0405 (9)0.0407 (9)−0.0021 (7)0.0024 (7)−0.0003 (7)
C60.0427 (9)0.0329 (8)0.0436 (9)0.0006 (6)0.0099 (7)0.0016 (7)
C70.0416 (9)0.0408 (9)0.0432 (9)0.0053 (7)0.0059 (7)0.0061 (7)
C80.0501 (9)0.0400 (9)0.0524 (10)0.0037 (7)0.0025 (8)−0.0007 (7)
C90.0491 (10)0.0381 (9)0.0575 (11)0.0055 (7)0.0115 (8)0.0073 (8)
C100.0489 (10)0.0502 (11)0.0593 (11)0.0057 (8)0.0032 (9)0.0163 (8)
C110.0435 (9)0.0520 (11)0.0534 (11)−0.0026 (7)−0.0004 (8)0.0077 (8)
C120.0353 (8)0.0411 (9)0.0459 (9)−0.0010 (6)0.0090 (7)0.0047 (7)
C130.0345 (8)0.0429 (9)0.0419 (9)−0.0031 (6)0.0077 (7)0.0020 (7)
C140.0431 (9)0.0453 (9)0.0428 (9)0.0058 (7)0.0067 (7)0.0032 (7)
C150.0573 (10)0.0682 (12)0.0561 (12)0.0001 (9)0.0196 (9)0.0022 (9)
C160.0804 (14)0.0795 (14)0.0530 (12)0.0217 (11)0.0267 (11)0.0086 (10)
C170.0785 (13)0.0681 (12)0.0422 (11)0.0274 (10)0.0039 (10)−0.0020 (9)
C180.0604 (11)0.0537 (11)0.0466 (10)0.0122 (8)−0.0037 (9)−0.0050 (8)
C190.0459 (9)0.0440 (9)0.0396 (9)0.0055 (7)0.0020 (7)0.0014 (7)
C200.0419 (9)0.0451 (9)0.0459 (10)−0.0040 (7)0.0017 (7)−0.0033 (7)
C210.0386 (8)0.0379 (8)0.0457 (9)−0.0019 (7)0.0052 (7)0.0007 (7)
C220.0364 (8)0.0437 (9)0.0376 (9)0.0050 (7)0.0018 (7)0.0039 (7)
C230.0454 (9)0.0509 (10)0.0413 (9)0.0020 (7)0.0028 (7)−0.0011 (7)
C240.0641 (11)0.0649 (12)0.0489 (11)0.0051 (9)0.0039 (9)−0.0121 (9)
C250.0634 (11)0.0820 (14)0.0417 (10)0.0176 (10)0.0092 (9)−0.0053 (9)
C260.0462 (9)0.0688 (12)0.0410 (10)0.0137 (8)0.0081 (8)0.0133 (8)
C270.0582 (11)0.0988 (16)0.0508 (11)0.0168 (11)0.0188 (9)0.0190 (11)
C280.0636 (12)0.0927 (17)0.0803 (15)−0.0013 (11)0.0278 (11)0.0310 (12)
C290.0632 (12)0.0694 (13)0.0838 (14)−0.0063 (10)0.0240 (11)0.0190 (11)
C300.0503 (10)0.0556 (11)0.0611 (11)0.0010 (8)0.0166 (9)0.0118 (9)
C310.0378 (8)0.0511 (10)0.0398 (9)0.0096 (7)0.0040 (7)0.0103 (7)
C320.1057 (17)0.0644 (13)0.0762 (15)−0.0114 (11)0.0088 (13)−0.0104 (11)
C330.0679 (13)0.0562 (12)0.0775 (16)−0.0092 (9)0.0048 (12)−0.0128 (11)
N10.0388 (7)0.0432 (7)0.0389 (7)−0.0020 (5)0.0059 (6)−0.0012 (6)
N20.0366 (7)0.0449 (7)0.0399 (7)−0.0070 (5)0.0068 (6)−0.0054 (6)
N30.0966 (14)0.0927 (14)0.0773 (13)−0.0082 (10)0.0014 (12)−0.0090 (11)
O10.0785 (9)0.0400 (7)0.0783 (9)0.0095 (6)−0.0022 (7)0.0083 (6)
O20.0680 (7)0.0367 (6)0.0509 (7)0.0085 (5)−0.0094 (6)−0.0027 (5)
O30.0701 (8)0.0492 (7)0.0668 (8)0.0141 (6)−0.0135 (7)0.0053 (6)
O40.0616 (7)0.0571 (7)0.0596 (8)−0.0153 (6)0.0145 (6)−0.0149 (6)
O50.0510 (7)0.0878 (9)0.0651 (8)−0.0290 (6)0.0100 (6)−0.0191 (7)

Geometric parameters (Å, °)

C1—C61.379 (2)C18—H180.9300
C1—C21.391 (2)C19—C201.474 (2)
C1—C131.5168 (19)C20—O51.2161 (17)
C2—C31.377 (2)C20—N21.3769 (18)
C2—H20.9300C21—N11.2885 (17)
C3—C41.383 (2)C21—C221.444 (2)
C3—H70.9300C21—H210.9300
C4—C51.372 (2)C22—C231.387 (2)
C4—O31.3663 (18)C22—C311.441 (2)
C5—C61.3867 (19)C23—O41.3620 (18)
C5—H50.9300C23—C241.402 (2)
C6—O21.3767 (17)C24—C251.353 (2)
C7—C81.381 (2)C24—H240.9300
C7—O21.3821 (17)C25—C261.415 (2)
C7—C121.384 (2)C25—H250.9300
C8—C91.375 (2)C26—C311.418 (2)
C8—H80.9300C26—C271.415 (2)
C9—O11.3652 (18)C27—C281.349 (3)
C9—C101.384 (2)C27—H270.9300
C10—C111.371 (2)C28—C291.404 (3)
C10—H100.9300C28—H280.9300
C11—C121.394 (2)C29—C301.357 (2)
C11—H110.9300C29—H290.9300
C12—C131.510 (2)C30—C311.410 (2)
C13—N21.5036 (17)C30—H300.9300
C13—C141.519 (2)C32—C331.447 (3)
C14—C151.378 (2)C32—H32A0.9600
C14—C191.384 (2)C32—H32B0.9600
C15—C161.389 (3)C32—H32C0.9600
C15—H150.9300C33—N31.135 (2)
C16—C171.382 (3)N1—N21.3747 (16)
C16—H160.9300O1—H10.8200
C17—C181.369 (2)O3—H60.8200
C17—H170.9300O4—H40.8200
C18—C191.385 (2)
C6—C1—C2116.72 (13)C19—C18—H18120.9
C6—C1—C13121.57 (13)C18—C19—C14121.68 (15)
C2—C1—C13121.59 (13)C18—C19—C20128.78 (15)
C3—C2—C1122.31 (15)C14—C19—C20109.53 (13)
C3—C2—H2118.8O5—C20—N2125.88 (14)
C1—C2—H2118.8O5—C20—C19128.55 (14)
C2—C3—C4119.27 (15)N2—C20—C19105.57 (13)
C2—C3—H7120.4N1—C21—C22120.49 (14)
C4—C3—H7120.4N1—C21—H21119.8
C5—C4—O3122.60 (14)C22—C21—H21119.8
C5—C4—C3120.01 (14)C23—C22—C31118.68 (14)
O3—C4—C3117.39 (14)C23—C22—C21121.17 (14)
C4—C5—C6119.55 (14)C31—C22—C21120.08 (14)
C4—C5—H5120.2O4—C23—C22121.95 (14)
C6—C5—H5120.2O4—C23—C24116.69 (15)
O2—C6—C1123.04 (13)C22—C23—C24121.33 (15)
O2—C6—C5114.82 (13)C25—C24—C23120.32 (17)
C1—C6—C5122.14 (14)C25—C24—H24119.8
C8—C7—O2114.83 (13)C23—C24—H24119.8
C8—C7—C12122.28 (14)C24—C25—C26121.34 (16)
O2—C7—C12122.88 (14)C24—C25—H25119.3
C9—C8—C7119.51 (15)C26—C25—H25119.3
C9—C8—H8120.2C31—C26—C27119.49 (17)
C7—C8—H8120.2C31—C26—C25119.12 (15)
O1—C9—C8117.18 (15)C27—C26—C25121.39 (17)
O1—C9—C10122.88 (14)C28—C27—C26120.99 (18)
C8—C9—C10119.93 (15)C28—C27—H27119.5
C11—C10—C9119.46 (15)C26—C27—H27119.5
C11—C10—H10120.3C27—C28—C29119.73 (17)
C9—C10—H10120.3C27—C28—H28120.1
C10—C11—C12122.34 (15)C29—C28—H28120.1
C10—C11—H11118.8C30—C29—C28120.82 (19)
C12—C11—H11118.8C30—C29—H29119.6
C7—C12—C11116.47 (14)C28—C29—H29119.6
C7—C12—C13121.57 (13)C29—C30—C31121.30 (17)
C11—C12—C13121.93 (13)C29—C30—H30119.3
N2—C13—C12110.73 (11)C31—C30—H30119.3
N2—C13—C1108.65 (11)C26—C31—C30117.62 (14)
C12—C13—C1110.26 (12)C26—C31—C22119.09 (15)
N2—C13—C1499.51 (11)C30—C31—C22123.27 (14)
C12—C13—C14114.24 (12)C33—C32—H32A109.5
C1—C13—C14112.87 (12)C33—C32—H32B109.5
C15—C14—C19120.07 (15)H32A—C32—H32B109.5
C15—C14—C13128.93 (14)C33—C32—H32C109.5
C19—C14—C13111.00 (13)H32A—C32—H32C109.5
C14—C15—C16118.06 (17)H32B—C32—H32C109.5
C14—C15—H15121.0N3—C33—C32179.1 (2)
C16—C15—H15121.0C21—N1—N2120.63 (12)
C17—C16—C15121.52 (17)N1—N2—C20128.89 (12)
C17—C16—H16119.2N1—N2—C13116.11 (11)
C15—C16—H16119.2C20—N2—C13114.35 (12)
C18—C17—C16120.44 (17)C9—O1—H1109.5
C18—C17—H17119.8C6—O2—C7118.21 (11)
C16—C17—H17119.8C4—O3—H6109.5
C17—C18—C19118.22 (17)C23—O4—H4109.5
C17—C18—H18120.9
C6—C1—C2—C30.8 (2)C15—C14—C19—C180.9 (2)
C13—C1—C2—C3−175.13 (15)C13—C14—C19—C18−179.13 (13)
C1—C2—C3—C4−0.6 (3)C15—C14—C19—C20−178.10 (14)
C2—C3—C4—C5−0.3 (2)C13—C14—C19—C201.88 (17)
C2—C3—C4—O3−179.62 (15)C18—C19—C20—O5−1.5 (3)
O3—C4—C5—C6−179.86 (14)C14—C19—C20—O5177.43 (16)
C3—C4—C5—C60.9 (2)C18—C19—C20—N2179.33 (15)
C2—C1—C6—O2179.93 (13)C14—C19—C20—N2−1.77 (17)
C13—C1—C6—O2−4.1 (2)N1—C21—C22—C238.3 (2)
C2—C1—C6—C5−0.3 (2)N1—C21—C22—C31−174.81 (12)
C13—C1—C6—C5175.71 (13)C31—C22—C23—O4178.31 (13)
C4—C5—C6—O2179.24 (13)C21—C22—C23—O4−4.7 (2)
C4—C5—C6—C1−0.6 (2)C31—C22—C23—C24−3.8 (2)
O2—C7—C8—C9179.00 (13)C21—C22—C23—C24173.18 (13)
C12—C7—C8—C9−0.9 (2)O4—C23—C24—C25179.68 (15)
C7—C8—C9—O1−178.66 (14)C22—C23—C24—C251.6 (3)
C7—C8—C9—C100.5 (2)C23—C24—C25—C261.1 (3)
O1—C9—C10—C11179.17 (15)C24—C25—C26—C31−1.5 (2)
C8—C9—C10—C110.1 (2)C24—C25—C26—C27178.67 (16)
C9—C10—C11—C12−0.3 (2)C31—C26—C27—C281.7 (3)
C8—C7—C12—C110.7 (2)C25—C26—C27—C28−178.46 (17)
O2—C7—C12—C11−179.20 (13)C26—C27—C28—C290.0 (3)
C8—C7—C12—C13−177.30 (14)C27—C28—C29—C30−1.3 (3)
O2—C7—C12—C132.8 (2)C28—C29—C30—C310.7 (3)
C10—C11—C12—C7−0.1 (2)C27—C26—C31—C30−2.2 (2)
C10—C11—C12—C13177.87 (14)C25—C26—C31—C30177.93 (14)
C7—C12—C13—N2106.04 (15)C27—C26—C31—C22179.15 (13)
C11—C12—C13—N2−71.84 (17)C25—C26—C31—C22−0.7 (2)
C7—C12—C13—C1−14.24 (18)C29—C30—C31—C261.1 (2)
C11—C12—C13—C1167.88 (13)C29—C30—C31—C22179.63 (15)
C7—C12—C13—C14−142.61 (14)C23—C22—C31—C263.2 (2)
C11—C12—C13—C1439.52 (19)C21—C22—C31—C26−173.75 (13)
C6—C1—C13—N2−106.63 (15)C23—C22—C31—C30−175.28 (14)
C2—C1—C13—N269.15 (17)C21—C22—C31—C307.7 (2)
C6—C1—C13—C1214.90 (18)C22—C21—N1—N2−173.76 (12)
C2—C1—C13—C12−169.33 (13)C21—N1—N2—C2019.9 (2)
C6—C1—C13—C14144.01 (14)C21—N1—N2—C13−169.86 (12)
C2—C1—C13—C14−40.22 (19)O5—C20—N2—N1−7.9 (3)
N2—C13—C14—C15178.80 (15)C19—C20—N2—N1171.36 (13)
C12—C13—C14—C1560.8 (2)O5—C20—N2—C13−178.20 (15)
C1—C13—C14—C15−66.2 (2)C19—C20—N2—C131.02 (16)
N2—C13—C14—C19−1.18 (15)C12—C13—N2—N1−51.04 (16)
C12—C13—C14—C19−119.14 (14)C1—C13—N2—N170.20 (15)
C1—C13—C14—C19113.83 (14)C14—C13—N2—N1−171.60 (11)
C19—C14—C15—C160.4 (2)C12—C13—N2—C20120.60 (14)
C13—C14—C15—C16−179.55 (15)C1—C13—N2—C20−118.17 (14)
C14—C15—C16—C17−1.3 (3)C14—C13—N2—C200.03 (15)
C15—C16—C17—C181.0 (3)C1—C6—O2—C7−9.1 (2)
C16—C17—C18—C190.3 (2)C5—C6—O2—C7171.10 (12)
C17—C18—C19—C14−1.3 (2)C8—C7—O2—C6−170.15 (13)
C17—C18—C19—C20177.50 (15)C12—C7—O2—C69.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4···N10.821.832.5600 (16)147
O3—H6···N3i0.822.082.882 (2)165
O1—H1···O4ii0.821.942.7484 (16)170

Symmetry codes: (i) x, y, z+1; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2535).

References

  • Bruker (1997). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2000). XP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, X. Q. & Ma, H. M. (2006). Anal. Chim. Acta, 575, 217–222. [PubMed]
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, D. Y., Huang, W., Duan, C. Y., Li, Z. & Meng, Q. J. (2007). Inorg. Chem.46, 1538–1544. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography