PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m392.
Published online 2008 January 23. doi:  10.1107/S1600536808001803
PMCID: PMC2960337

Nitrato(1,10-phenanthroline)(1H-1,2,4-triazole-3-carboxyl­ato)copper(II)

Abstract

In the title complex, [Cu(C3H2N3O2)(NO3)(C12H8N2)], the CuII ion is coordinated by an N and an O atom from a bidentate 1H-1,2,4-triazole-3-carboxyl­ate (TRIA) ligand, two N atoms from a 1,10-phenanthroline (phen) ligand, and an O atom from a nitrate ligand in a slightly distorted square-pyramidal environment. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link mol­ecules into one-dimensional chains propagating along the b axis direction.

Related literature

For related literature, see: Guo & Wang (2005 [triangle]); Zhu et al. (2007 [triangle]); Zhu, Yin, Feng, Zhang et al. (2008 [triangle]); Zhu, Yin, Feng, Hu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m392-scheme1.jpg

Experimental

Crystal data

  • [Cu(C3H2N3O2)(NO3)(C12H8N2)]
  • M r = 417.83
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m392-efi1.jpg
  • a = 12.3779 (14) Å
  • b = 12.6444 (15) Å
  • c = 10.0196 (10) Å
  • β = 107.416 (2)°
  • V = 1496.3 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.51 mm−1
  • T = 298 (2) K
  • 0.34 × 0.30 × 0.25 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.628, T max = 0.704
  • 7489 measured reflections
  • 2601 independent reflections
  • 2102 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.086
  • S = 1.06
  • 2601 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808001803/lh2590sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001803/lh2590Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (grant No. 20761002). This research was also sponsored by the Talented Highland Research Programme of Guangxi University, the Science Foundation of the State Ethnic Affairs Commission (grant No. 07GX05), the Development Foundation Guangxi Research Institute of Chemical Industry, the Ministry of Education, Science and Technology Key Projects (grant No. 205121), and the Science Foundation of Guangxi University for Nationalities (grant Nos. 0409032, 0409012, 0509ZD047), People’s Republic of China.

supplementary crystallographic information

Comment

In connection with our on-going studies in coordination chemistry (Zhu et al., 2007; Zhu, Yin, Feng, Hu et al., 2008; Zhu, Yin, Feng, Zhang et al., 2008) and the biological importance of triazole molecules (Guo et al., 2005), the crystal structure of a new ternary Cu(II) complex with 1H-1,2,4-triazole-3-carboxylate (TRIA), 1,10-phenanthroline (phen) and NO3 ligands is described. The molecular structure of the title compound is shown in Fig. 1. The CuII ion is bis-chelated by an N and an O atom, from a TRIA ligand, two N atoms from the chelating phen ligand, and the coordination geometry is completed by a O atom from an NO3 ligand. The atom O3 from the NO3 ligand occupies the apical site in a slightly distorted square-pyramidal ON3O coordination environment. The primary intermolecular contacts in the crystal structure are of the type N—H···O and involve the non-coordinating O atom of the carbonyl group and the N—H group of the TRIA ligand.

Experimental

CuNO3.3H2O (0.5 mmol, 120.8 mg) dissolved in distilled water (5 ml) was added with stirring at 323 K to 1H-1,2,4-triazole-3-carboxylic acid (0.5 mmol, 56.5 mg) also dissolved in distilled water (15 ml). The resulting blue solution was allowed to react for 30 min and 1,10-phenanthroline (0.5 mmol, 99.1 mg) dissolved in ethanol (5 ml) was added. Dark-blue crystals suitable for X-ray analysis were obtained by slow evaporation over a period of one month (yield 55%). Analysis. Found: C 43.28, H 2.22, N 20.33, O 19.01%. C15H10CuN6O5 requires: C 43.12, H 2.41, N 20.11, O 19.15%.

Refinement

H atoms were placed in calculated positions and included in the refinement in the riding-model approximation with N–H = 0.86 Å and C—H = 0.93 Å, and with Uiso(H) 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
Part of the crystal structure of the title compound showing hydrogen bonds as dashed lines.

Crystal data

[Cu(C3H2N3O2)(NO3)(C12H8N2)]F000 = 844
Mr = 417.83Dx = 1.855 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3888 reflections
a = 12.3779 (14) Åθ = 2.7–27.7º
b = 12.6444 (15) ŵ = 1.51 mm1
c = 10.0196 (10) ÅT = 298 (2) K
β = 107.416 (2)ºBlock, dark-blue
V = 1496.3 (3) Å30.34 × 0.30 × 0.25 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2601 independent reflections
Radiation source: fine-focus sealed tube2102 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −14→8
Tmin = 0.628, Tmax = 0.704k = −14→15
7489 measured reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.086  w = 1/[σ2(Fo2) + (0.0436P)2 + 0.8762P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2601 reflectionsΔρmax = 0.31 e Å3
244 parametersΔρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.67882 (3)1.02713 (2)0.58353 (3)0.02944 (14)
N10.57639 (19)1.32426 (17)0.6760 (2)0.0321 (5)
H10.57041.39180.68150.039*
N20.52709 (19)1.25284 (17)0.7412 (2)0.0309 (5)
N30.62666 (18)1.17198 (17)0.6177 (2)0.0279 (5)
N40.69970 (18)0.87706 (17)0.5374 (2)0.0277 (5)
N50.78098 (19)1.05325 (17)0.4636 (2)0.0298 (5)
N60.8485 (2)1.07924 (19)0.8885 (2)0.0360 (6)
O10.56644 (17)0.98205 (14)0.6733 (2)0.0369 (5)
O20.46508 (19)1.03880 (15)0.8074 (2)0.0449 (6)
O30.83942 (18)1.03049 (17)0.7753 (2)0.0451 (5)
O40.76459 (19)1.08825 (19)0.9301 (2)0.0512 (6)
O50.9405 (2)1.1152 (2)0.9554 (3)0.0639 (7)
C10.5273 (2)1.0534 (2)0.7344 (3)0.0304 (6)
C20.5598 (2)1.1626 (2)0.7031 (3)0.0268 (6)
C30.6344 (2)1.2759 (2)0.6036 (3)0.0315 (6)
H30.67461.30930.55070.038*
C40.6555 (2)0.7905 (2)0.5753 (3)0.0312 (6)
H4A0.60630.79720.62900.037*
C50.6811 (2)0.6898 (2)0.5364 (3)0.0355 (7)
H5A0.64790.63060.56290.043*
C60.7544 (2)0.6778 (2)0.4597 (3)0.0367 (7)
H60.77140.61070.43360.044*
C70.8041 (2)0.7676 (2)0.4206 (3)0.0300 (6)
C80.7725 (2)0.8658 (2)0.4602 (3)0.0255 (6)
C90.8155 (2)0.9609 (2)0.4195 (2)0.0261 (6)
C100.8887 (2)0.9563 (2)0.3374 (3)0.0314 (6)
C110.9255 (3)1.0523 (3)0.2966 (3)0.0403 (7)
H110.97181.05340.23870.048*
C120.8919 (3)1.1448 (2)0.3435 (3)0.0427 (8)
H120.91691.20920.31900.051*
C130.8209 (2)1.1429 (2)0.4275 (3)0.0375 (7)
H130.80051.20660.45970.045*
C140.8817 (2)0.7653 (2)0.3406 (3)0.0371 (7)
H140.90510.70040.31530.044*
C150.9220 (2)0.8549 (2)0.3007 (3)0.0368 (7)
H150.97250.85080.24830.044*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0405 (2)0.01967 (19)0.0373 (2)−0.00062 (14)0.02555 (16)−0.00268 (14)
N10.0420 (14)0.0163 (11)0.0440 (13)0.0013 (10)0.0220 (12)−0.0007 (10)
N20.0386 (13)0.0201 (11)0.0407 (13)0.0001 (10)0.0221 (11)0.0015 (10)
N30.0353 (13)0.0223 (11)0.0327 (12)−0.0008 (9)0.0202 (10)−0.0008 (9)
N40.0314 (12)0.0261 (12)0.0292 (11)−0.0020 (10)0.0146 (10)−0.0007 (10)
N50.0370 (13)0.0252 (12)0.0329 (12)−0.0017 (10)0.0190 (11)−0.0019 (10)
N60.0483 (16)0.0258 (12)0.0368 (14)−0.0026 (11)0.0172 (13)0.0039 (11)
O10.0511 (13)0.0207 (10)0.0525 (12)−0.0022 (8)0.0361 (11)−0.0036 (9)
O20.0627 (15)0.0243 (11)0.0683 (14)0.0007 (9)0.0509 (12)0.0013 (10)
O30.0444 (13)0.0571 (15)0.0368 (11)0.0069 (10)0.0165 (10)−0.0106 (10)
O40.0593 (15)0.0496 (14)0.0559 (14)0.0053 (11)0.0343 (12)−0.0101 (11)
O50.0640 (17)0.0648 (17)0.0596 (15)−0.0248 (14)0.0132 (13)−0.0089 (13)
C10.0362 (16)0.0225 (13)0.0379 (15)0.0015 (11)0.0194 (13)0.0012 (12)
C20.0298 (14)0.0226 (14)0.0310 (14)0.0013 (11)0.0140 (12)−0.0009 (11)
C30.0387 (16)0.0241 (14)0.0367 (15)−0.0015 (12)0.0189 (13)0.0011 (12)
C40.0370 (16)0.0276 (14)0.0306 (14)−0.0006 (12)0.0129 (13)0.0009 (11)
C50.0420 (17)0.0244 (14)0.0406 (16)−0.0032 (12)0.0134 (14)0.0017 (12)
C60.0425 (18)0.0239 (14)0.0427 (16)0.0052 (12)0.0109 (14)−0.0039 (12)
C70.0340 (15)0.0281 (15)0.0292 (14)0.0029 (12)0.0112 (12)−0.0035 (11)
C80.0267 (14)0.0271 (14)0.0237 (13)0.0011 (11)0.0090 (11)−0.0028 (11)
C90.0290 (14)0.0270 (14)0.0243 (13)0.0001 (11)0.0109 (11)−0.0019 (11)
C100.0284 (15)0.0396 (17)0.0291 (14)−0.0008 (12)0.0130 (12)−0.0023 (12)
C110.0413 (18)0.0448 (19)0.0421 (17)−0.0041 (14)0.0237 (15)0.0021 (14)
C120.0499 (19)0.0366 (17)0.0524 (19)−0.0053 (14)0.0319 (16)0.0055 (14)
C130.0464 (18)0.0246 (15)0.0483 (18)−0.0022 (12)0.0245 (15)−0.0018 (13)
C140.0417 (17)0.0338 (16)0.0390 (16)0.0071 (13)0.0169 (14)−0.0092 (13)
C150.0340 (16)0.0440 (18)0.0389 (16)0.0040 (13)0.0207 (13)−0.0072 (13)

Geometric parameters (Å, °)

Cu1—O11.9540 (19)C3—H30.9300
Cu1—N41.988 (2)C4—C51.396 (4)
Cu1—N32.005 (2)C4—H4A0.9300
Cu1—N52.015 (2)C5—C61.362 (4)
Cu1—O32.315 (2)C5—H5A0.9300
N1—C31.314 (3)C6—C71.402 (4)
N1—N21.361 (3)C6—H60.9300
N1—H10.8600C7—C81.395 (4)
N2—C21.305 (3)C7—C141.424 (4)
N3—C31.329 (3)C8—C91.423 (4)
N3—C21.363 (3)C9—C101.396 (4)
N4—C41.329 (3)C10—C111.401 (4)
N4—C81.359 (3)C10—C151.427 (4)
N5—C131.329 (4)C11—C121.371 (4)
N5—C91.362 (3)C11—H110.9300
N6—O51.223 (3)C12—C131.387 (4)
N6—O41.234 (3)C12—H120.9300
N6—O31.267 (3)C13—H130.9300
O1—C11.266 (3)C14—C151.347 (4)
O2—C11.225 (3)C14—H140.9300
C1—C21.497 (4)C15—H150.9300
O1—Cu1—N489.34 (8)N4—C4—C5121.7 (3)
O1—Cu1—N382.99 (8)N4—C4—H4A119.2
N4—Cu1—N3169.22 (9)C5—C4—H4A119.2
O1—Cu1—N5169.26 (8)C6—C5—C4120.3 (3)
N4—Cu1—N582.50 (9)C6—C5—H5A119.9
N3—Cu1—N5104.10 (9)C4—C5—H5A119.9
O1—Cu1—O3100.15 (8)C5—C6—C7119.3 (3)
N4—Cu1—O394.09 (8)C5—C6—H6120.3
N3—Cu1—O394.71 (8)C7—C6—H6120.3
N5—Cu1—O387.45 (8)C8—C7—C6117.2 (2)
C3—N1—N2110.7 (2)C8—C7—C14118.2 (3)
C3—N1—H1124.6C6—C7—C14124.5 (3)
N2—N1—H1124.6N4—C8—C7123.0 (2)
C2—N2—N1102.5 (2)N4—C8—C9116.3 (2)
C3—N3—C2103.2 (2)C7—C8—C9120.6 (2)
C3—N3—Cu1148.06 (19)N5—C9—C10123.3 (2)
C2—N3—Cu1108.37 (16)N5—C9—C8116.8 (2)
C4—N4—C8118.4 (2)C10—C9—C8119.9 (2)
C4—N4—Cu1128.81 (18)C9—C10—C11117.4 (3)
C8—N4—Cu1112.74 (17)C9—C10—C15118.6 (3)
C13—N5—C9117.7 (2)C11—C10—C15124.0 (3)
C13—N5—Cu1130.77 (19)C12—C11—C10118.8 (3)
C9—N5—Cu1111.51 (17)C12—C11—H11120.6
O5—N6—O4121.3 (3)C10—C11—H11120.6
O5—N6—O3119.4 (3)C11—C12—C13120.3 (3)
O4—N6—O3119.3 (2)C11—C12—H12119.8
C1—O1—Cu1116.28 (17)C13—C12—H12119.8
N6—O3—Cu1125.19 (17)N5—C13—C12122.4 (3)
O2—C1—O1125.5 (2)N5—C13—H13118.8
O2—C1—C2121.4 (2)C12—C13—H13118.8
O1—C1—C2113.0 (2)C15—C14—C7121.5 (3)
N2—C2—N3114.1 (2)C15—C14—H14119.3
N2—C2—C1128.3 (2)C7—C14—H14119.3
N3—C2—C1117.6 (2)C14—C15—C10121.2 (3)
N1—C3—N3109.4 (2)C14—C15—H15119.4
N1—C3—H3125.3C10—C15—H15119.4
N3—C3—H3125.3
C3—N1—N2—C20.2 (3)O1—C1—C2—N2174.8 (3)
O1—Cu1—N3—C3−178.1 (4)O2—C1—C2—N3−178.1 (3)
N4—Cu1—N3—C3−133.1 (5)O1—C1—C2—N3−1.0 (4)
N5—Cu1—N3—C3−6.3 (4)N2—N1—C3—N3−0.2 (3)
O3—Cu1—N3—C382.3 (4)C2—N3—C3—N10.2 (3)
O1—Cu1—N3—C210.49 (17)Cu1—N3—C3—N1−171.5 (3)
N4—Cu1—N3—C255.4 (5)C8—N4—C4—C5−0.7 (4)
N5—Cu1—N3—C2−177.73 (17)Cu1—N4—C4—C5−178.4 (2)
O3—Cu1—N3—C2−89.18 (18)N4—C4—C5—C61.1 (4)
O1—Cu1—N4—C4−5.8 (2)C4—C5—C6—C70.1 (4)
N3—Cu1—N4—C4−50.4 (6)C5—C6—C7—C8−1.7 (4)
N5—Cu1—N4—C4−178.8 (2)C5—C6—C7—C14−179.9 (3)
O3—Cu1—N4—C494.3 (2)C4—N4—C8—C7−0.9 (4)
O1—Cu1—N4—C8176.37 (18)Cu1—N4—C8—C7177.13 (19)
N3—Cu1—N4—C8131.8 (4)C4—N4—C8—C9178.6 (2)
N5—Cu1—N4—C83.38 (17)Cu1—N4—C8—C9−3.4 (3)
O3—Cu1—N4—C8−83.50 (18)C6—C7—C8—N42.1 (4)
O1—Cu1—N5—C13139.0 (4)C14—C7—C8—N4−179.5 (2)
N4—Cu1—N5—C13179.9 (3)C6—C7—C8—C9−177.4 (2)
N3—Cu1—N5—C138.6 (3)C14—C7—C8—C91.0 (4)
O3—Cu1—N5—C13−85.6 (3)C13—N5—C9—C10−0.9 (4)
O1—Cu1—N5—C9−43.7 (5)Cu1—N5—C9—C10−178.6 (2)
N4—Cu1—N5—C9−2.82 (17)C13—N5—C9—C8179.5 (2)
N3—Cu1—N5—C9−174.14 (17)Cu1—N5—C9—C81.8 (3)
O3—Cu1—N5—C991.65 (18)N4—C8—C9—N51.0 (3)
N4—Cu1—O1—C1175.3 (2)C7—C8—C9—N5−179.5 (2)
N3—Cu1—O1—C1−12.3 (2)N4—C8—C9—C10−178.6 (2)
N5—Cu1—O1—C1−144.3 (4)C7—C8—C9—C100.9 (4)
O3—Cu1—O1—C181.2 (2)N5—C9—C10—C11−1.6 (4)
O5—N6—O3—Cu1−148.4 (2)C8—C9—C10—C11178.0 (2)
O4—N6—O3—Cu132.6 (3)N5—C9—C10—C15178.1 (2)
O1—Cu1—O3—N6−52.7 (2)C8—C9—C10—C15−2.3 (4)
N4—Cu1—O3—N6−142.7 (2)C9—C10—C11—C122.6 (4)
N3—Cu1—O3—N631.0 (2)C15—C10—C11—C12−177.0 (3)
N5—Cu1—O3—N6135.0 (2)C10—C11—C12—C13−1.3 (5)
Cu1—O1—C1—O2−172.5 (2)C9—N5—C13—C122.4 (4)
Cu1—O1—C1—C210.6 (3)Cu1—N5—C13—C12179.5 (2)
N1—N2—C2—N3−0.1 (3)C11—C12—C13—N5−1.3 (5)
N1—N2—C2—C1−176.0 (3)C8—C7—C14—C15−1.6 (4)
C3—N3—C2—N20.0 (3)C6—C7—C14—C15176.7 (3)
Cu1—N3—C2—N2175.33 (18)C7—C14—C15—C100.2 (4)
C3—N3—C2—C1176.3 (2)C9—C10—C15—C141.8 (4)
Cu1—N3—C2—C1−8.3 (3)C11—C10—C15—C14−178.5 (3)
O2—C1—C2—N2−2.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.922.775 (3)172

Symmetry codes: (i) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2590).

References

  • Guo, X.-H. & Wang, Q.-X. (2005). Acta Cryst. E61, o3217–o3218.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Zhu, J., Yin, X.-H., Feng, Y., Hu, F.-L., Zhuang, Y. & Lin, C.-W. (2008). Acta Cryst. E64, m119. [PMC free article] [PubMed]
  • Zhu, J., Yin, X.-H., Feng, Y., Su, Z.-X. & Lin, C.-W. (2007). Acta Cryst. E63, m3167.
  • Zhu, J., Yin, X.-H., Feng, Y., Zhang, S.-S., Zhao, K. & Lin, C.-W. (2008). Acta Cryst. E64, m71. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography