PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m403–m404.
Published online 2008 January 25. doi:  10.1107/S1600536808000846
PMCID: PMC2960336

Acetato(1,10-phenanthroline-5,6-dione)silver(I) trihydrate

Abstract

In the structure of the title compound, [Ag(C2H3O2)(C12H6N2O2)]·3H2O, the AgI atom is coordinated by both 1,10-phenanthroline-5,6-dione N atoms and one O atom from the acetate anion. The three water mol­ecules are involved in extensive hydrogen bonding to each other and to the acetate O and 1,10-phenanthroline-5,6-dione O atoms. In addition, there are weak C—H(...)O inter­actions.

Related literature

For related literature, see: Allen (2002 [triangle]); Armaroli (2001 [triangle]); Burrows et al. (1995 [triangle]); Calderazzo et al. (1999 [triangle], 2002 [triangle]); Calucci et al. (2006 [triangle]); Fox et al. (1991 [triangle]); Galet et al. (2005 [triangle]); Hilt et al. (1997 [triangle]); Lei et al. (1996 [triangle]); Leschke et al. (2002 [triangle]); Ma et al. (2002 [triangle]); Okamura et al. (2006 [triangle]); Onuegbu et al. (2007 [triangle]); Pallenberg et al. (1997 [triangle]); Paramonov et al. (2003 [triangle]); Paw & Eisenberg (1997 [triangle]); Ruiz et al. (1999 [triangle]); Scaltrito et al. (2000 [triangle]); Shavaleev et al. (2003a [triangle], 2003b [triangle]); Titze et al. (1997 [triangle]); Uche et al. (2007 [triangle]); Whitesides et al. (1991 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m403-scheme1.jpg

Experimental

Crystal data

  • [Ag(C2H3O2)(C12H6N2O2)]·3H2O
  • M r = 431.15
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m403-efi1.jpg
  • a = 6.6851 (11) Å
  • b = 9.6407 (17) Å
  • c = 12.818 (2) Å
  • α = 96.200 (2)°
  • β = 103.490 (2)°
  • γ = 104.629 (2)°
  • V = 765.0 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.36 mm−1
  • T = 103 (2) K
  • 0.58 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.505, T max = 0.821
  • 8724 measured reflections
  • 4315 independent reflections
  • 4105 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.068
  • S = 1.07
  • 4315 reflections
  • 243 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.28 e Å−3
  • Δρmin = −1.03 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000846/ci2544sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000846/ci2544Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory for access to their diffractometers.

supplementary crystallographic information

Comment

The synthesis and understanding of multi-functional materials generated from spontaneously assembled molecules joined together non-covalently remain an important challenge in the science of molecules (Whitesides et al., 1991; Burrows et al., 1995; Galet et al., 2005). Metal complexes bearing electro-active ligands with two or more accessible oxidation states have been synthesized and shown to exhibit unique electronic structures resulting from the combination of the oxidation states of the metal and ligands (Ma et al., 2002; Calderazzo et al., 1999; Calderazzo et al., 2002; Calucci et al., 2006; Galet et al., 2005; Lei et al., 1996; Okamura et al., 2006).

While phendione usually binds to metals through it's imine N atoms (Onuegbu et al., 2007), in some cases both the N and O donors are used simultaneously (Calderazzo et al., 1999; Fox et al., 1991; Shavaleev et al., 2003a; Shavaleev et al., 2003b; Ruiz et al., 1999; Paw & Eisenberg, 1997). In light of these results, we have examined the coordination behavior of phendione with silver (Onuegbu et al., 2007). In this paper we report the synthesis and characterization of the title compound, [AgL(CH3CO2)].3H2O.

The structure of the title compound, shown in Fig. 1, is made up of a [AgL(CH3CO2)] moiety and three water molecules. The AgI atom is coordinated to the two nitrogen atoms of a phendione ligand and one O from the acetate anion. There are no previous examples where a AgI is bound to only one phendione ligand. The C?O bond lengths in the phendione ligands (1.210 (3) and 1.213 (3) Å) are comparable to those values found in other such complexes (Allen, 2002). The metrical parameters for the phendione ligand is in the normal ranges observed for complexes where only the N atoms are coordinated to a metal (Allen, 2002). The Ag—N bond lengths (2.256 (2) and 2.387 (2) Å) are similar to those found in related phenanthroline and phendione derivatives of silver (Leschke et al., 2002; Paramonov et al., 2003; Pallenberg et al., 1997; Titze et al., 1997; Onuegbu et al., 2007). In the title compound, silver is in a trigonal planar environment (Table 1).

In addition to the strong O—H···O hydrogen bonds (Table 2) formed by the water molecules to both the acetate and phendione O atoms, there are weak C—H···O hydrogen bonds between the hydrogen atoms on C2, C4 and C7 and either nitrate or phendione O atoms from an adjoining moiety.

Experimental

A flask containing 1,10-phenanthroline hydrate (1.00 g, 5.04 mmol) and potassium bromide (5.95 g, 50.0 mmol) was placed in an ice bath. Concentrated sulfuric acid (20 ml) was added in small portions, followed by drop wise addition of concentrated nitric acid (10 ml). The resulting solution was heated for 2 h at 353–358 K and cooled to room temperature. The solution was then poured into 400 ml of water and neutralized with sodium bicarbonate, after which the phendione was extracted with dichloromethane, and recrystallized using a methanol-water mixture.

The title compound was synthesized in an atmosphere saturated with N2. To a solution of AgCH3CO2 (silver ethanoate) in 20 ml of 1:1 solution of methanol and water was added drop-wise a solution (20 ml) of 1:1 methanol: water mixture containing 0.05 g of phendione. The final yellowish solution was filtered and allowed to slowly evaporate for about three weeks yielding colorless needle-shaped crystals of the title compound suitable for X-ray studies.

Refinement

C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C). The water H atoms were located as the highest peaks in the difference map after all other atoms had been located and refined. These all had reasonable O—H distanes and H—O—H angles and all formed hydrogen bonds with nearby O atoms. However for one H (H1W2) there was a close H1W2···H1W2 intermolecular contact (1.41 Å). When this atom was omitted from the refinement, the highest peak in the resulting difference map was in the same location. There were no other peaks which gave reasonable geometry. The water O—H distances were constrained to 0.82 Å.

Figures

Fig. 1.
View of the complex, [AgL(CH3CO2)].3H2O, showing the atom-labelling scheme. Hydrogen bonds are indicated by dashed lines. Displacement ellipsoids are drawn at the 20% probability level.
Fig. 2.
The molecular packing of the title compound, viewed approximately along the a axis. Dotted lines indicate hydrogen bonding interactions.

Crystal data

[Ag(C2H3O2)(C12H6N2O2)]·3H2OZ = 2
Mr = 431.15F000 = 432
Triclinic, P1Dx = 1.872 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.6851 (11) ÅCell parameters from 6131 reflections
b = 9.6407 (17) Åθ = 2.0–30.6º
c = 12.818 (2) ŵ = 1.36 mm1
α = 96.200 (2)ºT = 103 (2) K
β = 103.490 (2)ºNeedle, colorless
γ = 104.629 (2)º0.58 × 0.20 × 0.15 mm
V = 765.0 (2) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer4315 independent reflections
Radiation source: fine-focus sealed tube4105 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.020
T = 103(2) Kθmax = 30.7º
[var phi] and ω scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.505, Tmax = 0.821k = −13→12
8724 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068  w = 1/[σ2(Fo2) + (0.0247P)2 + 0.7651P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.007
4315 reflectionsΔρmax = 1.28 e Å3
243 parametersΔρmin = −1.03 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag0.26396 (2)0.328765 (18)0.530264 (13)0.02701 (7)
O10.2255 (3)0.94093 (16)0.31707 (14)0.0314 (3)
O20.1697 (3)0.73936 (18)0.13835 (13)0.0291 (3)
O1A0.3458 (2)0.19712 (16)0.65468 (11)0.0237 (3)
O2A0.2011 (2)0.34851 (16)0.73262 (11)0.0226 (3)
N10.2608 (3)0.57669 (19)0.53824 (13)0.0212 (3)
N20.2125 (3)0.37873 (18)0.35977 (13)0.0196 (3)
C10.2860 (3)0.6716 (3)0.62821 (16)0.0271 (4)
H1A0.29930.63810.69580.033*
C20.2936 (4)0.8165 (3)0.62682 (18)0.0304 (5)
H2A0.31280.88090.69230.036*
C30.2725 (3)0.8656 (2)0.52843 (18)0.0267 (4)
H3A0.27670.96420.52510.032*
C40.2451 (3)0.7677 (2)0.43425 (15)0.0193 (3)
C50.2224 (3)0.8171 (2)0.32790 (17)0.0212 (4)
C60.1923 (3)0.7039 (2)0.22726 (16)0.0196 (3)
C70.1930 (3)0.5547 (2)0.24261 (14)0.0168 (3)
C80.1725 (3)0.4507 (2)0.15281 (16)0.0229 (4)
H8A0.15910.47550.08230.028*
C90.1722 (3)0.3120 (2)0.16871 (17)0.0265 (4)
H9A0.15930.23940.10930.032*
C100.1909 (3)0.2797 (2)0.27241 (17)0.0242 (4)
H10A0.18840.18310.28240.029*
C110.2144 (3)0.51492 (19)0.34543 (14)0.0154 (3)
C120.2408 (3)0.6235 (2)0.44269 (14)0.0166 (3)
C1A0.2816 (3)0.2439 (2)0.73360 (15)0.0187 (3)
C2A0.3012 (4)0.1690 (3)0.83090 (17)0.0290 (4)
H2AA0.15790.11410.83340.043*
H2AB0.37010.24190.89760.043*
H2AC0.38830.10200.82510.043*
O1W0.2028 (3)0.98250 (18)0.03879 (14)0.0279 (3)
H1W10.190 (5)0.927 (3)0.081 (2)0.045 (9)*
H1W20.111 (9)1.023 (8)0.026 (7)0.18 (3)*
O2W0.3820 (3)0.8231 (2)0.89715 (14)0.0336 (4)
H2W10.315 (6)0.858 (4)0.931 (3)0.072 (13)*
H2W20.505 (4)0.874 (5)0.910 (4)0.097 (17)*
O3W0.3387 (3)0.5397 (2)0.93172 (14)0.0354 (4)
H3W10.296 (6)0.483 (3)0.874 (2)0.053 (10)*
H3W20.359 (9)0.627 (3)0.927 (5)0.12 (2)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag0.02657 (10)0.03085 (11)0.02929 (10)0.01137 (7)0.00869 (6)0.01938 (7)
O10.0345 (8)0.0148 (7)0.0441 (9)0.0076 (6)0.0070 (7)0.0094 (6)
O20.0393 (8)0.0280 (8)0.0268 (7)0.0127 (7)0.0137 (6)0.0158 (6)
O1A0.0339 (8)0.0221 (7)0.0216 (6)0.0145 (6)0.0113 (6)0.0081 (5)
O2A0.0278 (7)0.0211 (7)0.0230 (6)0.0120 (6)0.0078 (5)0.0071 (5)
N10.0188 (7)0.0254 (8)0.0194 (7)0.0053 (6)0.0055 (6)0.0056 (6)
N20.0197 (7)0.0153 (7)0.0238 (7)0.0055 (6)0.0047 (6)0.0061 (6)
C10.0220 (9)0.0387 (12)0.0190 (8)0.0060 (8)0.0065 (7)0.0020 (8)
C20.0280 (10)0.0340 (12)0.0245 (9)0.0050 (9)0.0077 (8)−0.0069 (8)
C30.0261 (10)0.0194 (9)0.0318 (10)0.0047 (8)0.0076 (8)−0.0026 (8)
C40.0180 (8)0.0162 (8)0.0225 (8)0.0039 (6)0.0048 (6)0.0026 (7)
C50.0192 (8)0.0151 (8)0.0290 (9)0.0043 (7)0.0058 (7)0.0061 (7)
C60.0201 (8)0.0170 (8)0.0247 (8)0.0061 (7)0.0083 (7)0.0094 (7)
C70.0178 (8)0.0149 (8)0.0187 (8)0.0049 (6)0.0054 (6)0.0050 (6)
C80.0242 (9)0.0249 (10)0.0199 (8)0.0077 (7)0.0062 (7)0.0027 (7)
C90.0294 (10)0.0214 (9)0.0266 (9)0.0079 (8)0.0058 (8)−0.0025 (7)
C100.0252 (9)0.0143 (8)0.0323 (10)0.0064 (7)0.0054 (8)0.0035 (7)
C110.0141 (7)0.0138 (8)0.0181 (7)0.0036 (6)0.0041 (6)0.0044 (6)
C120.0127 (7)0.0171 (8)0.0191 (8)0.0030 (6)0.0038 (6)0.0041 (6)
C1A0.0190 (8)0.0174 (8)0.0189 (8)0.0038 (6)0.0043 (6)0.0044 (6)
C2A0.0376 (11)0.0334 (11)0.0232 (9)0.0173 (9)0.0103 (8)0.0142 (8)
O1W0.0313 (8)0.0228 (7)0.0339 (8)0.0100 (6)0.0103 (6)0.0146 (6)
O2W0.0390 (9)0.0294 (9)0.0304 (8)0.0073 (7)0.0084 (7)0.0045 (7)
O3W0.0431 (10)0.0308 (9)0.0279 (8)0.0114 (8)0.0049 (7)−0.0039 (7)

Geometric parameters (Å, °)

Ag—O1A2.1987 (14)C6—C71.474 (3)
Ag—N22.2554 (17)C7—C111.398 (2)
Ag—N12.3870 (18)C7—C81.399 (3)
O1—C51.212 (2)C8—C91.373 (3)
O2—C61.212 (2)C8—H8A0.95
O1A—C1A1.270 (2)C9—C101.383 (3)
O2A—C1A1.257 (2)C9—H9A0.95
N1—C121.340 (2)C10—H10A0.95
N1—C11.341 (3)C11—C121.484 (2)
N2—C111.343 (2)C1A—C2A1.504 (3)
N2—C101.346 (3)C2A—H2AA0.98
C1—C21.387 (3)C2A—H2AB0.98
C1—H1A0.95C2A—H2AC0.98
C2—C31.384 (3)O1W—H1W10.80 (2)
C2—H2A0.95O1W—H1W20.81 (2)
C3—C41.395 (3)O2W—H2W10.79 (2)
C3—H3A0.95O2W—H2W20.81 (2)
C4—C121.399 (3)O3W—H3W10.82 (2)
C4—C51.479 (3)O3W—H3W20.82 (2)
C5—C61.536 (3)
O1A—Ag—N2153.49 (6)C11—C7—C6121.26 (16)
O1A—Ag—N1133.64 (6)C8—C7—C6119.55 (17)
N2—Ag—N171.57 (6)C9—C8—C7118.65 (18)
C1A—O1A—Ag104.47 (12)C9—C8—H8A120.7
C12—N1—C1118.63 (18)C7—C8—H8A120.7
C12—N1—Ag114.93 (12)C8—C9—C10119.10 (18)
C1—N1—Ag126.37 (15)C8—C9—H9A120.5
C11—N2—C10118.50 (17)C10—C9—H9A120.5
C11—N2—Ag118.68 (12)N2—C10—C9122.98 (19)
C10—N2—Ag122.73 (13)N2—C10—H10A118.5
N1—C1—C2122.9 (2)C9—C10—H10A118.5
N1—C1—H1A118.6N2—C11—C7121.57 (16)
C2—C1—H1A118.6N2—C11—C12117.94 (16)
C3—C2—C1118.84 (19)C7—C11—C12120.49 (16)
C3—C2—H2A120.6N1—C12—C4122.01 (17)
C1—C2—H2A120.6N1—C12—C11116.75 (17)
C2—C3—C4118.8 (2)C4—C12—C11121.23 (16)
C2—C3—H3A120.6O2A—C1A—O1A122.59 (17)
C4—C3—H3A120.6O2A—C1A—C2A119.33 (17)
C3—C4—C12118.85 (18)O1A—C1A—C2A118.08 (17)
C3—C4—C5120.01 (18)C1A—C2A—H2AA109.5
C12—C4—C5121.14 (17)C1A—C2A—H2AB109.5
O1—C5—C4123.23 (19)H2AA—C2A—H2AB109.5
O1—C5—C6119.30 (18)C1A—C2A—H2AC109.5
C4—C5—C6117.47 (16)H2AA—C2A—H2AC109.5
O2—C6—C7122.05 (18)H2AB—C2A—H2AC109.5
O2—C6—C5119.57 (18)H1W1—O1W—H1W2115 (6)
C7—C6—C5118.39 (16)H2W1—O2W—H2W2112 (5)
C11—C7—C8119.19 (17)H3W1—O3W—H3W2115 (5)
N2—Ag—O1A—C1A−165.35 (13)C11—C7—C8—C90.6 (3)
N1—Ag—O1A—C1A35.72 (16)C6—C7—C8—C9−179.60 (18)
O1A—Ag—N1—C12167.44 (11)C7—C8—C9—C100.3 (3)
N2—Ag—N1—C12−2.82 (12)C11—N2—C10—C90.5 (3)
O1A—Ag—N1—C1−9.46 (19)Ag—N2—C10—C9−176.01 (15)
N2—Ag—N1—C1−179.72 (17)C8—C9—C10—N2−0.9 (3)
O1A—Ag—N2—C11−161.23 (13)C10—N2—C11—C70.5 (3)
N1—Ag—N2—C112.85 (13)Ag—N2—C11—C7177.12 (13)
O1A—Ag—N2—C1015.3 (2)C10—N2—C11—C12−179.30 (16)
N1—Ag—N2—C10179.36 (17)Ag—N2—C11—C12−2.6 (2)
C12—N1—C1—C2−0.3 (3)C8—C7—C11—N2−1.0 (3)
Ag—N1—C1—C2176.46 (15)C6—C7—C11—N2179.17 (16)
N1—C1—C2—C30.5 (3)C8—C7—C11—C12178.76 (16)
C1—C2—C3—C4−0.2 (3)C6—C7—C11—C12−1.1 (3)
C2—C3—C4—C12−0.3 (3)C1—N1—C12—C4−0.2 (3)
C2—C3—C4—C5−179.94 (19)Ag—N1—C12—C4−177.32 (13)
C3—C4—C5—O1−0.3 (3)C1—N1—C12—C11179.68 (16)
C12—C4—C5—O1−179.91 (19)Ag—N1—C12—C112.52 (19)
C3—C4—C5—C6−179.92 (17)C3—C4—C12—N10.5 (3)
C12—C4—C5—C60.4 (3)C5—C4—C12—N1−179.88 (17)
O1—C5—C6—O2−0.8 (3)C3—C4—C12—C11−179.36 (17)
C4—C5—C6—O2178.84 (18)C5—C4—C12—C110.3 (3)
O1—C5—C6—C7178.90 (18)N2—C11—C12—N1−0.1 (2)
C4—C5—C6—C7−1.4 (2)C7—C11—C12—N1−179.85 (16)
O2—C6—C7—C11−178.52 (18)N2—C11—C12—C4179.77 (16)
C5—C6—C7—C111.8 (3)C7—C11—C12—C40.0 (3)
O2—C6—C7—C81.7 (3)Ag—O1A—C1A—O2A−3.1 (2)
C5—C6—C7—C8−178.06 (17)Ag—O1A—C1A—C2A176.13 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O20.80 (2)2.01 (2)2.773 (2)158 (3)
O1W—H1W2···O1Wi0.81 (2)2.05 (4)2.781 (3)151 (7)
O2W—H2W1···O1Wii0.79 (2)2.12 (2)2.904 (2)168 (4)
O2W—H2W2···O1Wiii0.81 (2)2.00 (2)2.805 (3)170 (5)
O3W—H3W1···O2A0.82 (2)1.97 (2)2.791 (2)178 (4)
O3W—H3W2···O2W0.82 (2)1.95 (2)2.769 (3)172 (6)
C3—H3A···O1Aiv0.952.523.286 (3)138
C8—H8A···O3Wv0.952.553.393 (3)148
C10—H10A···O1vi0.952.483.431 (3)174

Symmetry codes: (i) −x, −y+2, −z; (ii) x, y, z+1; (iii) −x+1, −y+2, −z+1; (iv) x, y+1, z; (v) x, y, z−1; (vi) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2544).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Armaroli, N. (2001). Chem. Soc. Rev.30, 113–124.
  • Bruker (2003). SMART (Version 5.631) and SAINT (Version 6.45A). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burrows, A. D., Chan, C. W., Chowdhry, M. M., McGrady, J. E. & Mingos, D. M. P. (1995). Chem. Soc. Rev.24, 329–339.
  • Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). Dalton Trans. pp. 4389–4396.
  • Calderazzo, F., Pampaloni, G. & Passarelli, V. (2002). Inorg. Chim. Acta, 330, 136–142.
  • Calucci, L., Pampaloni, G., Pinzino, C. & Prescimone, A. (2006). Inorg. Chim. Acta, 359, 3911–3920.
  • Fox, G. A., Bhattacharya, S. & Pierpont, C. G. (1991). Inorg. Chem.30, 2895–2899.
  • Galet, A., Munoz, M. C., Agusti, G., Martinez, V., Gaspar, A. B. & Real, J. A. (2005). Z. Anorg. Allg. Chem.631, 1985–1987.
  • Hilt, G., Jarbawi, T., Haineman, W. R. & Steckhan, E. (1997). Chem. Eur. J.3, 79–88.
  • Lei, Y., Shi, C. & Anson, F. C. (1996). Inorg. Chem.35, 3044–3049.
  • Leschke, M., Rheinwald, G. & Lang, H. (2002). Z. Anorg. Allg. Chem.628, 2470–2477.
  • Ma, G., Fischer, A. & Glaser, J. (2002). Eur. J. Inorg. Chem. pp. 1307–1314.
  • Okamura, R., Fujihara, T., Wada, T. & Tanaka, K. (2006). Bull. Chem. Soc. Jpn, 79, 106–112.
  • Onuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2007). Acta Cryst. E63, m2309–m2310.
  • Pallenberg, A. J., Marschner, T. M. & Barnhart, D. M. (1997). Polyhedron, 16, 2711–2719.
  • Paramonov, S. E., Kuzmina, N. P. & Troyanov, S. I. (2003). Polyhedron, 22, 837–841.
  • Paw, W. & Eisenberg, R. (1997). Inorg. Chem.36, 2287–2293. [PubMed]
  • Ruiz, R., Caneschi, A., Gatteschi, D., Gaspar, A. B., Real, J. A., Fernandez, I. & Munoz, M. C. (1999). Inorg. Chem. Commun.2, 521–523.
  • Scaltrito, D. V., Thompson, D. W., O’Callaghan, J. A. & Meyer, G. J. (2000). Coord. Chem. Rev.208, 243–266.
  • Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003a). Chem. Commun. pp. 1134–1135. [PubMed]
  • Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003b). Chem. Eur. J.9, 5283–5291. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Titze, C., Kaim, W. & Zalis, S. (1997). Inorg. Chem.36, 2505–2510.
  • Uche, U., Jimerson, T., Vivone, A., Bakare, O. & Hosten, C. M. (2007). J. Phys. Chem. A, 111, 3409–3415. [PubMed]
  • Whitesides, G. M., Mathias, J. P. & Seto, C. T. (1991). Science, 254, 1312–1319. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography