PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m393.
Published online 2008 January 23. doi:  10.1107/S1600536808001967
PMCID: PMC2960333

catena-Poly[[dichloridozinc(II)]-μ-2,5-di-4-pyridyl-1,3,4-thia­diazole-κ2 N 2:N 5]

Abstract

The title compound, [ZnCl2(C12H8N4S)]n, was obtained by crystallization of 2,5-di-4-pyridyl-1,3,4-thia­diazole with ZnCl2 in an MeOH/CHCl3 solvent system. The structure contains infinite chains of ZnCl2 units connected by the bifunctional thia­diazole ligands, with ZnII adopting a distorted tetra­hedral coordination geometry. The dihedral angle between the two pyridyl rings in each ligand is 34.3 (1)°, and the dihedral angles between the thia­diazole ring and the two pyridyl rings are 18.3 (2) and 16.1 (2)°. The shortest Zn(...)Zn distance within each polymeric chain is 11.862 (3) Å, while the shortest inter­chain Zn(...)Zn distance is 7.057 (3) Å.

Related literature

For related literature, see: Chen et al. (2007 [triangle]); Dong, Ma & Huang (2003 [triangle]); Dong, Ma, Huang, Guo & Smith (2003 [triangle]); Du et al. (2003 [triangle]); Fujita (1998 [triangle]); Huang et al. (2004 [triangle]); Inoue et al. (1996 [triangle]); Maekawam et al. (2000 [triangle]); Moulton & Zaworotko (2001 [triangle]); Xiong et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m393-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C12H8N4S)]
  • M r = 376.55
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m393-efi1.jpg
  • a = 12.9990 (13) Å
  • b = 5.4039 (5) Å
  • c = 20.195 (2) Å
  • β = 101.459 (4)°
  • V = 1390.3 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.29 mm−1
  • T = 293 (2) K
  • 0.20 × 0.12 × 0.04 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002 [triangle]) T min = 0.690, T max = 0.912
  • 10073 measured reflections
  • 3155 independent reflections
  • 2688 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.089
  • S = 1.03
  • 3155 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: CrystalClear (Rigaku, 2002 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXL97 and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001967/bi2274sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001967/bi2274Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Much current research activity of supramolecular coordination polymers with novel topologies and structural motifs is driven by their encouraging potential applications in the fields of nonlinear optics, catalysis and separation, magnetism and molecular recognition (Moulton & Zaworotko, 2001, Xiong et al., 2001, Inoue et al., 1996). Therefore, the discovery and rational design of such coordination polymers is an important and very active topic. One useful strategy for the discovery of novel coordination polymers has been the use of various spacer ligands as the building block (Du et al., 2003, Chen et al., 2007). So far, a wide range of infinite frameworks have already been generated with simple 4,4'-bipyridyl-based ligands (Maekawam et al., 2000, Fujita, 1998).

As previously reported (Dong, Ma & Huang, 2003, Huang et al., 2004), oxadiazole-containing ligands can take versatile bonding modes (it can act as mono-, bi-, tri- and even tetradentate ligand) and the structural geometries of the ligands themselves are also variable. On the other hand, d10 transition metal-containing complexes often show interesting optical properties. Our interest in the supramolecular coordination polymers lead us to use 2,5-di-4-pyridyl-1,3,4-thiadiazole (L) and ZnCl2 as precursors to generate the title compound.

Crystallization of L and ZnCl2 in MeOH/CHCl3 mixed solvent system at room temperature yield the title compound, [Zn(C12H8N4S)Cl2]n. The crystal structure is composed of 1-D zigzag chains with ZnCl2 units connected to each other by the N-donor bifunctional ligands. As shown in Fig. 1, the ZnII center adopts a distorted tetrahedral coordination geometry, defined by two N donors from two 2,5-di-4-pyridyl-1,3,4- thiadiazole ligands (L) and terminal chloride ligands. Both Zn—N bond distances are 2.060 (2) Å, and the two Zn—Cl bond distances are 2.1938 (8) and 2.2402 (8) Å, respectively. The greatest angular distortion from tetrahedral geometry is exhibited by the Cl—Zn—Cl angle of 127.44 (3) ° and by the N—Zn—N angle of 103.11 (9) °. All these values compare well to those reported in other [Zn(4,4'-bipy)] compounds (Dong, Ma, Huang, Guo et al., 2003). The two pyridyl ring groups in each ligand are not coplanar, and the dihedral angle between them is 34.3 (1) °. The dihedral angles between the thiadiazole ring and the two pyridyl ring groups in each ligand are 18.3 (2) ° and 16.1 (2) °. The intrachain Zn···Zn distance is 11.862 (3) Å, while the shortest interchain Zn···Zn distance is 7.057 (3) Å.

In the crystal, the 1-D zigzag chains stack along crystallographic β axis. In the ac plane (Fig. 2), neighboring chains are arranged in opposite directions, and are stacked either in a shoulder-to-shoulder or a staggered fashion.

Experimental

A solution of ZnCl2 (22.7 mg, 0.05 mmol) in MeOH (5 ml) was carefully layered on a solution of 2,5-di-4-pyridyl-1,3,4-thiadiazole (12 mg, 0.05 mmol) in CHCl3 (5 ml) in a straight glass tube. After one week, colorless single crystals were obtained (yield ca 25% based on Zn).

Refinement

H atoms were placed geometrically with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound showing 30% probability displacement ellipsoids (H atoms are omitted).

Crystal data

[ZnCl2(C12H8N4S)]F(000) = 752
Mr = 376.55Dx = 1.799 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2905 reflections
a = 12.9990 (13) Åθ = 3.9–27.5°
b = 5.4039 (5) ŵ = 2.29 mm1
c = 20.195 (2) ÅT = 293 K
β = 101.459 (4)°Prism, white
V = 1390.3 (2) Å30.20 × 0.12 × 0.04 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer3155 independent reflections
Radiation source: fine-focus sealed tube2688 reflections with I > 2σ(I)
graphiteRint = 0.032
ω scansθmax = 27.5°, θmin = 3.9°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002)h = −14→16
Tmin = 0.690, Tmax = 0.912k = −7→6
10073 measured reflectionsl = −26→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0439P)2 + 0.6049P] where P = (Fo2 + 2Fc2)/3
3155 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn11.45602 (2)1.18961 (6)0.680619 (15)0.03305 (12)
S11.23784 (6)0.24683 (15)0.42060 (4)0.04195 (19)
Cl11.34567 (6)1.43843 (14)0.71674 (4)0.04576 (19)
Cl21.59540 (6)1.29522 (15)0.63700 (4)0.0476 (2)
N11.37010 (17)0.9563 (4)0.60991 (10)0.0325 (5)
N21.10437 (18)0.3373 (5)0.49394 (11)0.0374 (5)
N31.06015 (18)0.1586 (5)0.45020 (12)0.0385 (6)
N41.01683 (17)−0.4543 (4)0.25889 (10)0.0320 (5)
C11.2665 (2)0.9276 (5)0.60620 (14)0.0376 (6)
H1A1.23291.02880.63250.045*
C21.2081 (2)0.7546 (6)0.56503 (14)0.0370 (6)
H2A1.13620.74230.56300.044*
C31.2576 (2)0.5981 (5)0.52646 (12)0.0321 (6)
C41.3644 (2)0.6283 (6)0.53025 (14)0.0397 (7)
H4A1.40020.52730.50520.048*
C51.4169 (2)0.8089 (6)0.57142 (14)0.0403 (7)
H5A1.48830.83000.57270.048*
C61.1964 (2)0.4066 (5)0.48470 (12)0.0308 (6)
C71.1201 (2)0.0891 (5)0.40919 (13)0.0314 (6)
C81.0874 (2)−0.1003 (5)0.35760 (13)0.0317 (6)
C91.0054 (2)−0.2613 (5)0.36310 (14)0.0360 (6)
H9A0.9736−0.25360.40040.043*
C100.9723 (2)−0.4310 (5)0.31285 (13)0.0364 (6)
H10A0.9165−0.53440.31650.044*
C111.0960 (2)−0.3019 (5)0.25406 (14)0.0390 (7)
H11A1.1278−0.31780.21690.047*
C121.1329 (2)−0.1232 (6)0.30118 (14)0.0389 (6)
H12A1.1875−0.01930.29540.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.03407 (19)0.0322 (2)0.03165 (17)−0.00116 (13)0.00357 (13)0.00049 (13)
S10.0336 (4)0.0522 (5)0.0429 (4)−0.0112 (3)0.0145 (3)−0.0163 (3)
Cl10.0474 (4)0.0385 (4)0.0521 (4)0.0064 (3)0.0115 (3)−0.0035 (3)
Cl20.0436 (4)0.0520 (5)0.0500 (4)−0.0069 (3)0.0159 (3)0.0043 (4)
N10.0314 (11)0.0336 (13)0.0313 (11)0.0002 (9)0.0032 (9)−0.0022 (10)
N20.0351 (12)0.0412 (14)0.0370 (12)−0.0051 (10)0.0094 (10)−0.0086 (11)
N30.0344 (12)0.0436 (14)0.0377 (12)−0.0044 (11)0.0075 (10)−0.0077 (11)
N40.0343 (12)0.0300 (12)0.0309 (10)0.0007 (9)0.0045 (9)0.0001 (9)
C10.0335 (14)0.0388 (16)0.0396 (14)0.0016 (12)0.0054 (12)−0.0069 (13)
C20.0287 (14)0.0399 (16)0.0415 (15)0.0031 (12)0.0048 (12)−0.0050 (13)
C30.0323 (13)0.0339 (15)0.0287 (12)−0.0026 (11)0.0024 (10)0.0031 (11)
C40.0347 (15)0.0472 (17)0.0382 (14)−0.0017 (13)0.0096 (12)−0.0131 (13)
C50.0291 (14)0.0494 (19)0.0424 (15)−0.0044 (12)0.0069 (12)−0.0086 (14)
C60.0298 (13)0.0323 (14)0.0302 (12)0.0016 (11)0.0056 (10)−0.0008 (11)
C70.0306 (13)0.0315 (14)0.0318 (12)−0.0011 (11)0.0054 (11)0.0022 (11)
C80.0300 (13)0.0326 (14)0.0307 (12)0.0009 (11)0.0012 (10)−0.0016 (11)
C90.0380 (15)0.0404 (16)0.0315 (13)−0.0054 (12)0.0119 (12)−0.0001 (12)
C100.0379 (15)0.0356 (16)0.0365 (14)−0.0072 (12)0.0097 (12)0.0005 (12)
C110.0371 (15)0.0463 (18)0.0361 (14)−0.0061 (13)0.0134 (12)−0.0080 (13)
C120.0322 (14)0.0443 (16)0.0416 (15)−0.0082 (13)0.0106 (12)−0.0040 (13)

Geometric parameters (Å, °)

Zn1—N4i2.060 (2)C2—H2A0.930
Zn1—N12.060 (2)C3—C41.384 (4)
Zn1—Cl12.1939 (8)C3—C61.466 (4)
Zn1—Cl22.2402 (8)C4—C51.373 (4)
S1—C71.727 (3)C4—H4A0.930
S1—C61.729 (3)C5—H5A0.930
N1—C51.341 (3)C7—C81.462 (4)
N1—C11.343 (3)C8—C121.390 (4)
N2—C61.302 (3)C8—C91.397 (4)
N2—N31.357 (3)C9—C101.372 (4)
N3—C71.301 (3)C9—H9A0.930
N4—C101.337 (3)C10—H10A0.930
N4—C111.337 (3)C11—C121.374 (4)
C1—C21.375 (4)C11—H11A0.930
C1—H1A0.930C12—H12A0.930
C2—C31.391 (4)
N4i—Zn1—N1103.11 (9)C3—C4—H4A120.3
N4i—Zn1—Cl1107.44 (6)N1—C5—C4123.0 (3)
N1—Zn1—Cl1107.78 (7)N1—C5—H5A118.5
N4i—Zn1—Cl2104.00 (7)C4—C5—H5A118.5
N1—Zn1—Cl2104.64 (6)N2—C6—C3122.0 (2)
Cl1—Zn1—Cl2127.44 (3)N2—C6—S1113.3 (2)
C7—S1—C686.95 (13)C3—C6—S1124.68 (19)
C5—N1—C1117.7 (2)N3—C7—C8122.0 (2)
C5—N1—Zn1121.31 (18)N3—C7—S1113.6 (2)
C1—N1—Zn1120.60 (18)C8—C7—S1124.45 (19)
C6—N2—N3113.2 (2)C12—C8—C9117.7 (3)
C7—N3—N2113.0 (2)C12—C8—C7122.4 (2)
C10—N4—C11117.7 (2)C9—C8—C7119.9 (2)
C10—N4—Zn1ii121.41 (18)C10—C9—C8119.3 (2)
C11—N4—Zn1ii120.52 (18)C10—C9—H9A120.3
N1—C1—C2122.6 (3)C8—C9—H9A120.3
N1—C1—H1A118.7N4—C10—C9122.9 (3)
C2—C1—H1A118.7N4—C10—H10A118.6
C1—C2—C3119.4 (3)C9—C10—H10A118.6
C1—C2—H2A120.3N4—C11—C12123.4 (2)
C3—C2—H2A120.3N4—C11—H11A118.3
C2—C3—C4117.9 (3)C12—C11—H11A118.3
C2—C3—C6119.5 (2)C11—C12—C8118.9 (3)
C4—C3—C6122.6 (2)C11—C12—H12A120.5
C5—C4—C3119.3 (3)C8—C12—H12A120.5
C5—C4—H4A120.3

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2274).

References

  • Brandenburg, K. (1999). DIAMOND Version 2.0. Crystal Impact GbR, Bonn, Germany.
  • Chen, S. M., Zhang, J. & Lu, C. Z. (2007). CrystEngComm, 9, 389–392.
  • Dong, Y. B., Ma, J. P. & Huang, R. Q. (2003). Inorg. Chem.42, 294–300. [PubMed]
  • Dong, Y. B., Ma, J. P., Huang, R. Q., Guo, D. S. & Smith, M. D. (2003). Solid State Sci.5, 1177–1186.
  • Du, M., Bu, X. H., Huang, Z., Chen, S. T. & Guo, Y. M. (2003). Inorg. Chem.42, 552–559. [PubMed]
  • Fujita, M. (1998). Chem. Soc. Rev.27, 417–425.
  • Huang, Z., Song, H. B., Du, M., Chen, S. T. & Bu, X. H. (2004). Inorg. Chem.43, 931–944. [PubMed]
  • Inoue, K., Hayamizu, T., Iwamura, H., Hashizume, D. & Ohashi, Y. (1996). J. Am. Chem. Soc.118, 1803–1804.
  • Maekawam, M., Konaka, H., Suenaga, Y., Kuroda-Sowa, T. & Munakata, M. (2000). J. Chem. Soc. Dalton Trans. pp. 4161–4166.
  • Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev.101, 1629–1658. [PubMed]
  • Rigaku (2002). CrystalClear Version 1.35. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xiong, R. G., You, X. Z., Abrahams, B. F., Xue, Z. & Chen, C. M. (2001). Angew. Chem. Int. Ed.40, 4422–4425. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography