PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o449.
Published online 2008 January 16. doi:  10.1107/S1600536807066706
PMCID: PMC2960329

Redetermination at 113 K of 2,2-tetra­methyl­ene-1,2-dihydro­quinazolin-4(3H)-one

Abstract

The title compound {systematic name: spiro­[cyclo­pentane-1,2′(1′H)-quinazolin]-4′(3′H)-one]}, C12H14N2O, has been reported previously [Klemm, Weakley, Gilbertson & Song (1998 [triangle]). J. Heterocycl Chem. 35, 1269–1273]. Its structure has been redetermined at 113 K with greater precision for all data. The mol­ecule is built up from two fused six-membered rings and one five-membered ring linked through a spiro C atom. The pyrimidine ring has an envelope conformation and the cyclopentane ring adopts a distorted boat form. There are inter­molecular N—H(...)O hydrogen bonds, which form a two-dimensional sheet parallel to the (001) plane.

Related literature

For related literature, see: Bernstein et al. (1995 [triangle]); Cremer & Pople (1975 [triangle]); Etter et al. (1990 [triangle]); Shi et al. (2004 [triangle]); Summers et al. (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o449-scheme1.jpg

Experimental

Crystal data

  • C12H14N2O
  • M r = 202.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o449-efi1.jpg
  • a = 10.3872 (12) Å
  • b = 12.0252 (13) Å
  • c = 16.3027 (19) Å
  • V = 2036.3 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 113 (2) K
  • 0.26 × 0.24 × 0.16 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (Jacobson, 1998 [triangle]) T min = 0.972, T max = 0.984
  • 23533 measured reflections
  • 2403 independent reflections
  • 2200 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.104
  • S = 1.09
  • 2403 reflections
  • 142 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku, 2004 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and CAMERON (Watkin et al., 1993 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066706/dn2298sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066706/dn2298Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Beijing Institute of Technology for financial support and Naikai University for the X-ray diffraction analysis.

supplementary crystallographic information

Comment

When we used 2-aminobenzonitrile and cyclopentanone in presence of zinc chloride to synthesize tacrine (Summers et al., 1986) derivative, the unexpected spiro compound (I) (Scheme 1), was obtained. Its structure has been already reported (Klemm et al., 1998), however, as we were investigating the molecular and supramolecular architecture of related compounds, its structural redetermination at lower temperature (113 K) has been undertaken

The molecular structure of (I) is built up with two fused six membered ring and a five membered ring linked through a spiro C atom (Fig. 1). The pyrimidine ring has an envelope conformation with puckering parameters Q=0.3821 (11) Å, Θ= 115.21 (16)° and [var phi]= 108.70 (19)° (Cremer & Pople, 1975). The five-membered ring displays an enveloppe conformation at C12 with puckering parameters Q(2)= O.3925 (15)Å and [var phi](2)= 319.8 (2)\%. The geometry of the fused rings compares well with the related 3-phenyl-1,2-dihydroquinazolin-4(3H)-one derivative (Shi et al., 2004).

The crystal structure of (I) is stabilized by the interplay of N—H···O interactions. The two N—H groups form N—H···O hydrogen bonds with the ketone O atom of symmetry related molecules building a R22(8) graph set motif (Etter et al., 1990; Bernstein et al., 1995). Those motifs formed with N—H···O hydrogen bonds link to each other building a two dimensionnal network parallel to the (0 0 1) plane (Fig. 2, Table 1).

Experimental

2,2-Tetramethylene-1,2-dihydroquinazolin-4(3H)-one (I) was prepared from the reflux of 2-aminobenzonitrile (1 mmol) with cyclopentanone (1 mmol) in presence of zinc chloride (1.2 mmol) in 10 ml DMF for 1.5 h. Then the reaction mixture was cooled and quenched with water and the precipitate was separated by filtration. The filtration residue was dispersed into water and titrated to pH 12–13 by 20% sodium hydroxide. After filtration, the product was obtained in 70% yield by column chromatography (200–300 mesh silica gel, ethyl acetate–petroleum with 1:2).

The single-crystal of (I) was cultured from a solution of ethanol by slow evaporation at room temperature.

Spectra data: IR (KBr, cm-1): 3289, 3166, 2934, 1638, 1613, 1429; 1H NMR (DMSO-d6) δH: 1.75–2.08 (8H, m, C4H8), 6.07 (1H, s, NH), 6.73 (2H, dd, J=7.8, 8.0 Hz, ArH), 7.19 (1H, s, NH), 7.24–7.26 (1H, m, J=7.2 Hz, ArH), 7.73 (1H, d, J=8.0 Hz, ArH); 13C NMR (DMSO-d6) δC: 21.97 (2 C), 38.88 (2 C), 77.05, 114.32, 114.57, 116.53, 127.23, 132.99, 147.49, 163.42; MS (ESI): m/z (%) =203.1 (100) [M+H]+; C12H14N2O: calcd. C 71.26, H 6.98, N 13.85; found C 71.38, H 6.71, N 13.49.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C or N). H atoms of NH group were located in difference Fourier maps and included in the subsequent refinement using restraints (N—H= 0.85 (1) Å) with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of (I), with the atom-labelling scheme. Displacement elipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing showing one sheet of molecules connected by N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bondings have been omitted for clarity.

Crystal data

C12H14N2OF000 = 864
Mr = 202.25Dx = 1.319 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71070 Å
Hall symbol: -P 2ac 2abCell parameters from 5598 reflections
a = 10.3872 (12) Åθ = 2.6–27.9º
b = 12.0252 (13) ŵ = 0.09 mm1
c = 16.3027 (19) ÅT = 113 (2) K
V = 2036.3 (4) Å3Prism, colorless
Z = 80.26 × 0.24 × 0.16 mm

Data collection

Rigaku Saturn diffractometer2403 independent reflections
Radiation source: rotating anode2200 reflections with I > 2σ(I)
Monochromator: confocalRint = 0.033
Detector resolution: 7.31 pixels mm-1θmax = 27.9º
T = 113(2) Kθmin = 2.9º
ω scansh = −13→13
Absorption correction: multi-scan(Jacobson, 1998)k = −15→15
Tmin = 0.972, Tmax = 0.984l = −21→21
23533 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104  w = 1/[σ2(Fo2) + (0.0476P)2 + 0.9123P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2403 reflectionsΔρmax = 0.31 e Å3
142 parametersΔρmin = −0.23 e Å3
2 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.08554 (8)0.58043 (6)0.58072 (5)0.01704 (19)
N10.14762 (9)0.42225 (8)0.51639 (6)0.0162 (2)
H10.0821 (11)0.4272 (12)0.4846 (8)0.019*
N20.30566 (10)0.30494 (8)0.57191 (6)0.0176 (2)
H20.3437 (13)0.2417 (9)0.5745 (9)0.021*
C10.27524 (10)0.48724 (9)0.62879 (6)0.0149 (2)
C20.34067 (10)0.38442 (9)0.62795 (7)0.0155 (2)
C30.43548 (11)0.36400 (10)0.68791 (7)0.0189 (2)
H30.47780.29590.68910.023*
C40.46564 (11)0.44475 (10)0.74485 (7)0.0208 (3)
H40.52950.43080.78350.025*
C50.40171 (12)0.54737 (10)0.74554 (7)0.0210 (3)
H50.42320.60130.78400.025*
C60.30602 (11)0.56750 (9)0.68820 (7)0.0186 (2)
H60.26180.63470.68910.022*
C70.16430 (10)0.50191 (9)0.57324 (7)0.0144 (2)
C80.24515 (11)0.33881 (9)0.49553 (6)0.0148 (2)
C90.18435 (11)0.23692 (10)0.45265 (7)0.0182 (2)
H9A0.17030.17740.49180.022*
H9B0.10230.25680.42830.022*
C100.27944 (13)0.20002 (11)0.38614 (9)0.0300 (3)
H10A0.30380.12290.39420.036*
H10B0.24100.20750.33220.036*
C110.39717 (12)0.27571 (10)0.39391 (8)0.0229 (3)
H11A0.46200.24240.42900.027*
H11B0.43480.29060.34060.027*
C120.34353 (11)0.38216 (10)0.43211 (7)0.0195 (2)
H12A0.30190.42820.39110.023*
H12B0.41110.42480.45850.023*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0156 (4)0.0139 (4)0.0217 (4)0.0012 (3)−0.0010 (3)−0.0011 (3)
N10.0137 (4)0.0154 (4)0.0194 (5)0.0023 (3)−0.0038 (4)−0.0026 (4)
N20.0213 (5)0.0138 (5)0.0178 (5)0.0050 (4)−0.0044 (4)−0.0006 (4)
C10.0145 (5)0.0152 (5)0.0149 (5)−0.0015 (4)0.0004 (4)0.0010 (4)
C20.0144 (5)0.0165 (5)0.0155 (5)−0.0010 (4)0.0016 (4)0.0010 (4)
C30.0180 (5)0.0210 (5)0.0178 (5)0.0034 (4)0.0003 (4)0.0027 (4)
C40.0179 (5)0.0287 (6)0.0157 (5)−0.0010 (5)−0.0031 (4)0.0020 (5)
C50.0231 (6)0.0220 (6)0.0180 (5)−0.0051 (5)−0.0032 (4)−0.0020 (4)
C60.0204 (6)0.0161 (5)0.0194 (6)−0.0017 (4)−0.0002 (4)−0.0007 (4)
C70.0140 (5)0.0132 (5)0.0159 (5)−0.0015 (4)0.0018 (4)0.0015 (4)
C80.0141 (5)0.0134 (5)0.0168 (5)0.0015 (4)−0.0010 (4)−0.0008 (4)
C90.0164 (5)0.0171 (5)0.0212 (5)−0.0009 (4)−0.0007 (4)−0.0035 (4)
C100.0310 (7)0.0266 (7)0.0324 (7)−0.0065 (5)0.0113 (6)−0.0128 (5)
C110.0196 (6)0.0256 (6)0.0235 (6)0.0013 (5)0.0037 (5)−0.0038 (5)
C120.0199 (6)0.0187 (6)0.0198 (5)−0.0028 (4)0.0021 (4)0.0002 (4)

Geometric parameters (Å, °)

O1—C71.2553 (13)C5—H50.9300
N1—C71.3442 (14)C6—H60.9300
N1—C81.4659 (14)C8—C121.5443 (15)
N1—H10.857 (9)C8—C91.5456 (15)
N2—C21.3712 (15)C9—C101.5323 (17)
N2—C81.4531 (14)C9—H9A0.9700
N2—H20.857 (9)C9—H9B0.9700
C1—C61.4041 (15)C10—C111.5297 (17)
C1—C21.4110 (15)C10—H10A0.9700
C1—C71.4762 (15)C10—H10B0.9700
C2—C31.4091 (16)C11—C121.5287 (17)
C3—C41.3794 (16)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.4014 (17)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C5—C61.3857 (16)
C7—N1—C8123.96 (9)N1—C8—C12112.43 (9)
C7—N1—H1118.0 (9)N2—C8—C9110.01 (9)
C8—N1—H1117.1 (10)N1—C8—C9111.42 (9)
C2—N2—C8119.36 (9)C12—C8—C9103.60 (9)
C2—N2—H2117.6 (10)C10—C9—C8106.63 (9)
C8—N2—H2119.3 (10)C10—C9—H9A110.4
C6—C1—C2119.95 (10)C8—C9—H9A110.4
C6—C1—C7121.25 (10)C10—C9—H9B110.4
C2—C1—C7118.35 (10)C8—C9—H9B110.4
N2—C2—C3121.74 (10)H9A—C9—H9B108.6
N2—C2—C1119.31 (10)C11—C10—C9106.53 (10)
C3—C2—C1118.85 (10)C11—C10—H10A110.4
C4—C3—C2120.19 (11)C9—C10—H10A110.4
C4—C3—H3119.9C11—C10—H10B110.4
C2—C3—H3119.9C9—C10—H10B110.4
C3—C4—C5121.17 (11)H10A—C10—H10B108.6
C3—C4—H4119.4C12—C11—C10103.92 (10)
C5—C4—H4119.4C12—C11—H11A111.0
C6—C5—C4119.23 (11)C10—C11—H11A111.0
C6—C5—H5120.4C12—C11—H11B111.0
C4—C5—H5120.4C10—C11—H11B111.0
C5—C6—C1120.57 (11)H11A—C11—H11B109.0
C5—C6—H6119.7C11—C12—C8103.37 (9)
C1—C6—H6119.7C11—C12—H12A111.1
O1—C7—N1121.26 (10)C8—C12—H12A111.1
O1—C7—C1122.62 (10)C11—C12—H12B111.1
N1—C7—C1116.01 (9)C8—C12—H12B111.1
N2—C8—N1106.98 (9)H12A—C12—H12B109.1
N2—C8—C12112.46 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.857 (9)2.043 (9)2.8936 (12)171.2 (14)
N2—H2···O1ii0.857 (9)2.077 (9)2.9303 (13)173.3 (14)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2298).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
  • Klemm, L. H., Weakley, T. J. R., Gilbertson, R. D. & Song, Y. H. (1998). J. Heterocycl. Chem.35, 1269–1273.
  • Rigaku (2004). CrystalClear Version 1.36. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Shi, D. Q., Rong, L. C., Wang, J. X., Wang, X. S., Tu, S. J. & Hu, H. W. (2004). Chem. J. Chin. Univ.25, 2051–2053.
  • Summers, W. K., Majovski, L. V., Marsh, G. M., Tachiki, K. & Kling, A. (1986). N. Engl. J. Med.315, 1241–1245. [PubMed]
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography