PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o427.
Published online 2008 January 11. doi:  10.1107/S1600536807062666
PMCID: PMC2960321

7-Nitro­quinazolin-4(3H)-one

Abstract

In the crystal structure of the title compound, C8H5N3O3, inter­molecular N—H(...)O hydrogen bonds link mol­ecules into centrosymmetric dimers. These dimers are, in turn, linked though weak inter­molecular C—H(...)O and C—H(...)N hydrogen bonds and π–π stacking inter­actions, with centroid–centroid distances of 3.678 (3) Å, into a three-dimensional network.

Related literature

For related literature on biological activity, see: Masanori et al. (2003 [triangle]); Wolfe et al. (1990 [triangle]). For related structures, see: Chadwick & Easton (1983 [triangle]); Etter (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o427-scheme1.jpg

Experimental

Crystal data

  • C8H5N3O3
  • M r = 191.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o427-efi1.jpg
  • a = 5.1063 (10) Å
  • b = 11.206 (2) Å
  • c = 13.528 (3) Å
  • β = 99.19 (3)°
  • V = 764.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 153 (2) K
  • 0.24 × 0.18 × 0.16 mm

Data collection

  • Rigaku R-AXIS RAPID IP area-detector diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.969, T max = 0.979
  • 5749 measured reflections
  • 1340 independent reflections
  • 1215 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.096
  • S = 1.11
  • 1340 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2004 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2001 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062666/lh2576sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062666/lh2576Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is financially supported the Foundation of Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry (No. 2006–6).

supplementary crystallographic information

Comment

7-Nitro-4(3H)-Quinazolinone (I), is an important intermediate for drugs synthesis and its derivatives show many biological activities including anti-fungal, anti-convulsant (Masanori et al., 2003), anti-bacterial, anti-cancer, anti-inflammatory, and anti-tumor (Wolfe et al., 1990). We report here the crystal structure of (I) (Fig. 1).

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (Chadwick & Easton, 1983; Etter, 1983). Atoms N3 and O3 lie in the 1,2-dihydroquinazoline ring (C1—C8/N1/N2) plane, and the deviations from the least-squares plane through the ring atoms are all smaller than 0.026 (2) Å. The relatively short distances of 3.678 (3)Å between the centroids of 1,2-dihydropyrimidine (C1/C2/C3/C8/N1/N2) and benzene (C3—C8) rings related by (1 + x, y, x) indicates the presence of weak π-π interactions. In the crystal structure, intermolecular N—H···O hydrogen bonds link molecules into centrosymmetric dimers. These dimers, are in turn, linked though weak intermolecular C—H···O and C—H···N hydrogen bonds and π···π stacking interactions into a three-dimensional network.

Experimental

The title compound was synthesized by the reaction of 4-nitro-2-amino-benezic acid 18.2 g (0.1 mol) and formamidine acetate 10.1 g (0.2 mol) in 100 mL andryous EtOH, refulxing for 6 h. The solid filtrated and washed with 20 ml H2O, cool 30 ml EtOH and 30 ml e ther, respectively, dried under vacuum to obtain the title compound 15.8 g, yield: 82.8%. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation the solution of 7-Nitro-4(3H)-Quinazolinone in EtOH/acetone/THF (1:1:1 V/V/V) at room temperature over a period of one week.

Refinement

The H atoms were placed in calculated positions, with C—H = 0.95 Å, N—H = 0.88Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 times Ueq(C, N).

Figures

Fig. 1.
The molecular structure with displacement ellipsoids drawn at the 35% probability level.
Fig. 2.
The packing of the title compound with hydrogen bonds shown as dashed lines.

Crystal data

C8H5N3O3F000 = 392
Mr = 191.15Dx = 1.662 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6207 reflections
a = 5.1063 (10) Åθ = 6.0–55.0º
b = 11.206 (2) ŵ = 0.13 mm1
c = 13.528 (3) ÅT = 153 (2) K
β = 99.19 (3)ºNeedle, colorless
V = 764.1 (3) Å30.24 × 0.18 × 0.16 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer1340 independent reflections
Radiation source: Rotating Anode1215 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.021
T = 153(2) Kθmax = 25.0º
ω Oscillation scansθmin = 3.1º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = −6→6
Tmin = 0.969, Tmax = 0.979k = −13→13
5749 measured reflectionsl = −16→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.096  w = 1/[σ2(Fo2) + (0.064P)2 + 0.0923P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1340 reflectionsΔρmax = 0.15 e Å3
127 parametersΔρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.37255 (17)0.37262 (8)0.24708 (6)0.0228 (3)
O2−0.1637 (2)0.51746 (9)0.33145 (8)0.0324 (3)
O30.69259 (17)−0.00398 (7)0.41669 (6)0.0203 (3)
N10.6334 (2)0.33230 (10)0.53066 (8)0.0214 (3)
N20.8443 (2)0.14538 (9)0.52489 (7)0.0183 (3)
H2A0.98070.10150.55120.022*
C10.8209 (2)0.25752 (11)0.56195 (9)0.0206 (3)
H1B0.95360.28270.61520.025*
C20.6655 (2)0.09785 (11)0.44863 (8)0.0163 (3)
C30.4471 (2)0.17821 (10)0.40975 (8)0.0160 (3)
C40.2491 (2)0.14293 (11)0.33110 (9)0.0188 (3)
H4A0.25570.06580.30250.023*
C50.0451 (2)0.21960 (11)0.29509 (9)0.0194 (3)
H5A−0.09040.19640.24210.023*
C60.0434 (2)0.33253 (11)0.33893 (9)0.0171 (3)
C70.2345 (2)0.37169 (11)0.41533 (9)0.0176 (3)
H7A0.22740.44980.44210.021*
C80.4409 (2)0.29261 (11)0.45270 (8)0.0166 (3)
N3−0.17982 (19)0.41378 (10)0.30265 (7)0.0194 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0179 (5)0.0261 (6)0.0224 (5)−0.0023 (4)−0.0028 (3)0.0042 (3)
O20.0344 (6)0.0166 (5)0.0416 (6)0.0077 (4)−0.0086 (4)−0.0043 (4)
O30.0219 (5)0.0143 (5)0.0248 (5)0.0033 (4)0.0043 (3)−0.0018 (3)
N10.0228 (6)0.0167 (6)0.0227 (5)0.0021 (4)−0.0023 (4)−0.0026 (4)
N20.0167 (5)0.0155 (6)0.0219 (5)0.0034 (4)0.0003 (4)0.0017 (4)
C10.0225 (7)0.0170 (7)0.0208 (6)0.0016 (5)−0.0005 (5)−0.0008 (4)
C20.0170 (6)0.0146 (7)0.0183 (6)−0.0009 (5)0.0062 (4)0.0020 (4)
C30.0171 (6)0.0146 (7)0.0174 (6)−0.0001 (5)0.0056 (4)0.0017 (4)
C40.0208 (7)0.0145 (7)0.0217 (6)−0.0011 (5)0.0049 (5)−0.0034 (5)
C50.0192 (6)0.0196 (7)0.0185 (6)−0.0032 (5)0.0010 (4)−0.0011 (5)
C60.0165 (6)0.0156 (6)0.0195 (6)0.0014 (5)0.0036 (4)0.0033 (5)
C70.0201 (7)0.0127 (6)0.0199 (6)0.0010 (5)0.0033 (5)−0.0006 (4)
C80.0182 (6)0.0150 (6)0.0168 (6)−0.0016 (5)0.0034 (4)0.0009 (5)
N30.0192 (6)0.0191 (6)0.0197 (5)0.0013 (4)0.0020 (4)0.0037 (4)

Geometric parameters (Å, °)

O1—N31.2289 (14)C3—C41.4023 (17)
O2—N31.2240 (15)C3—C81.4099 (17)
O3—C21.2358 (15)C4—C51.3779 (18)
N1—C11.2916 (17)C4—H4A0.9500
N1—C81.3946 (16)C5—C61.3982 (18)
N2—C11.3652 (16)C5—H5A0.9500
N2—C21.3713 (16)C6—C71.3750 (17)
N2—H2A0.8800C6—N31.4799 (16)
C1—H1B0.9500C7—C81.4076 (18)
C2—C31.4644 (17)C7—H7A0.9500
C1—N1—C8115.91 (11)C4—C5—C6118.03 (11)
C1—N2—C2123.16 (10)C4—C5—H5A121.0
C1—N2—H2A118.4C6—C5—H5A121.0
C2—N2—H2A118.4C7—C6—C5123.78 (11)
N1—C1—N2125.49 (11)C7—C6—N3118.00 (11)
N1—C1—H1B117.3C5—C6—N3118.21 (11)
N2—C1—H1B117.3C6—C7—C8118.02 (11)
O3—C2—N2121.57 (11)C6—C7—H7A121.0
O3—C2—C3124.30 (11)C8—C7—H7A121.0
N2—C2—C3114.12 (11)N1—C8—C7117.89 (11)
C4—C3—C8120.54 (11)N1—C8—C3122.83 (11)
C4—C3—C2120.97 (11)C7—C8—C3119.28 (11)
C8—C3—C2118.49 (11)O2—N3—O1123.89 (10)
C5—C4—C3120.34 (11)O2—N3—C6117.99 (10)
C5—C4—H4A119.8O1—N3—C6118.10 (10)
C3—C4—H4A119.8
C8—N1—C1—N20.28 (19)N3—C6—C7—C8177.39 (10)
C2—N2—C1—N1−0.5 (2)C1—N1—C8—C7−179.22 (11)
C1—N2—C2—O3179.92 (11)C1—N1—C8—C30.03 (18)
C1—N2—C2—C30.33 (16)C6—C7—C8—N1−179.57 (10)
O3—C2—C3—C4−0.08 (19)C6—C7—C8—C31.15 (17)
N2—C2—C3—C4179.50 (10)C4—C3—C8—N1−179.68 (11)
O3—C2—C3—C8−179.62 (10)C2—C3—C8—N1−0.14 (17)
N2—C2—C3—C8−0.04 (16)C4—C3—C8—C7−0.44 (18)
C8—C3—C4—C5−0.31 (18)C2—C3—C8—C7179.10 (10)
C2—C3—C4—C5−179.83 (11)C7—C6—N3—O210.75 (16)
C3—C4—C5—C60.30 (18)C5—C6—N3—O2−170.57 (11)
C4—C5—C6—C70.47 (19)C7—C6—N3—O1−167.81 (10)
C4—C5—C6—N3−178.12 (10)C5—C6—N3—O110.87 (16)
C5—C6—C7—C8−1.21 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.881.982.8514 (14)169
C1—H1B···O2ii0.952.543.2703 (17)134
C1—H1B···O1iii0.952.553.0978 (17)117
C5—H5A···O2iv0.952.493.2846 (16)142
C7—H7A···N1ii0.952.553.4402 (18)155

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+3/2, −y+1/2, z+1/2; (iv) −x−1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2576).

References

  • Chadwick, D. J. & Easton, I. W. (1983). Acta Cryst. C39, 454–456.
  • Etter, M. C. (1983). J. Chem. Soc. Perkin Trans. 2, pp. 115–121.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Masanori, T., Yoshiaki, I., Hideyuki, T., Takahiro, N., Hirotada, T., Tominaga, F. & Hideya, H. (2003). Bioorg. Med. Chem.11, 383–391. [PubMed]
  • Rigaku (2004). RAPID-AUTO Version 3.0. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2001). SHELXTL Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Wolfe, J. F., Rathman, T. L., Sleevi, M. C., Campbell, J. A. & Greenwood, T. D. (1990). J. Med. Chem.33, 161–166. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography