PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o412.
Published online 2008 January 9. doi:  10.1107/S1600536807068286
PMCID: PMC2960317

3,3-Dimethyl-1-[5-(1H-1,2,4-triazol-1-yl­meth­yl)-1,3,4-thia­diazol-2-ylsulfan­yl]butan-2-one

Abstract

In the mol­ecule of the title compound, C11H15N5OS2, the thia­diazole and triazole rings are not coplanar, the dihedral angle formed by their mean planes being 59.9 (2)°. The exocyclic S atom, and the methyl­ene, carbonyl, tert-butyl and one methyl carbon form an approximately planar zigzag chain, which makes a dihedral angle of 74.6 (1)° with the thia­diazole ring.

Related literature

For the structure of the related compound, 1-(2,4-dichloro­phen­yl)-2-[5-(1H-1,2,4-triazol-1-ylmeth­yl)-1,3,4-thia­diazol-2-ylsulfan­yl] ethanone, see: Wei et al. (2007 [triangle]). For the synthesis of the starting material 5-(1H-1,2,4-triazol-1-yl)meth­yl)-1,3,4-thia­diazole-2(3H)-thione, see: Hu et al. (2006 [triangle]), Xu et al. (2005 [triangle], 2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o412-scheme1.jpg

Experimental

Crystal data

  • C11H15N5OS2
  • M r = 297.40
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o412-efi1.jpg
  • a = 8.9723 (8) Å
  • b = 10.1103 (8) Å
  • c = 10.1734 (8) Å
  • α = 60.728 (1)°
  • β = 80.340 (1)°
  • γ = 65.416 (1)°
  • V = 731.3 (1) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 293 (2) K
  • 0.41 × 0.22 × 0.18 mm

Data collection

  • Siemens SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.865, T max = 0.938
  • 3810 measured reflections
  • 2529 independent reflections
  • 2246 reflections with I > 2σ(I)
  • R int = 0.010

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.143
  • S = 1.05
  • 2529 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT (Siemens, 1996 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997 [triangle]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995 [triangle]) and PLATON (Spek, 2003 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068286/ya2060sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068286/ya2060Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Natural Science Found­ation of Shandong Province (grant Nos. Z2006B01 and Y2006B07).

supplementary crystallographic information

Comment

Recently, we have reported the structure of 1-(2,4-dichlorophenyl)-2-[5-(1H-1,2,4- triazol-1-ylmethyl)-1,3,4-thiadiazol-2-ylsulfanyl] ethanone (Wei et al., 2007). As part of our ongoing investigation of biological properties of 1,2,4-triazole and 1,3,4-thiadiazole derivatives, the title compound, (I), was synthesized; its crystal structure is reported here.

The bond lengths and angles are comparable with those of the above mentioned related compound, reported by Wei et al. (2007). The whole molecule is non-planar with a dihedral angle of 59.9 (2)° between the thiadiazole (C1/C2/N1/N2/S1) and triazole (N3—N5/C4/C5) rings. The S2—C6—C7—C8—C10 atoms form approximately planar zigzag chain, which makes a dihedral angle of 74.6 (1)° with the thiadiazole ring.

Experimental

8 mmol of 5-((1H-1,2,4-triazol-1-yl)methyl)-1,3,4-thiadiazole-2(3H)-thione (Hu et al., 2006; Xu et al., 2005; Xu et al., 2006) was refluxed for 4 h with 8 mmol of 1-bromo-3,3-dimethylbutan-2-one in 50 ml of acetone in the presence of 8 mmol of triethylamine. The solid that precipitated was recrystallized from ethanol (1.21 g, yield 50.86%). Single crystals suitable for X-ray measurements were obtained by slow evaporation of ethylacetate solution at room temperature.

Refinement

After the H atoms were located in the difference map, they were fixed geometrically in the idealized positions and allowed to ride on the parent C atoms, with C—H distances of 0.96 Å (methyl), 0.97 Å (CH2) or 0.93 Å (CH), and with Uiso(H) values of 1.2Ueq(C) and 1.5 Ueq(C) (for methyl H atoms).

Figures

Fig. 1.
The structure of the title compound (I), showing 50% probability displacement ellipsoids and the atom numbering scheme.

Crystal data

C11H15N5OS2Z = 2
Mr = 297.40F(000) = 312
Triclinic, P1Dx = 1.351 Mg m3
a = 8.9723 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1103 (8) ÅCell parameters from 2210 reflections
c = 10.1734 (8) Åθ = 2.5–25.6°
α = 60.728 (1)°µ = 0.36 mm1
β = 80.340 (1)°T = 293 K
γ = 65.416 (1)°Block, colourless
V = 731.3 (1) Å30.41 × 0.22 × 0.18 mm

Data collection

Siemens SMART 1000 CCD area-detector diffractometer2529 independent reflections
Radiation source: fine-focus sealed tube2246 reflections with I > 2σ(I)
graphiteRint = 0.010
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = −9→10
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −9→12
Tmin = 0.865, Tmax = 0.938l = −12→12
3810 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0806P)2 + 0.357P] where P = (Fo2 + 2Fc2)/3
2529 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.5556 (3)0.4597 (3)0.7067 (3)0.0680 (7)
N20.6886 (3)0.4050 (3)0.7986 (3)0.0670 (6)
N30.2627 (3)0.8466 (3)0.4764 (2)0.0546 (5)
N40.2154 (4)0.9710 (3)0.5103 (3)0.0718 (7)
N50.2371 (4)1.0629 (3)0.2618 (3)0.0762 (7)
O11.0413 (3)0.4947 (2)0.7133 (2)0.0746 (6)
S10.49906 (8)0.68646 (9)0.77341 (9)0.0627 (3)
S20.81659 (9)0.48127 (9)0.96116 (8)0.0609 (2)
C10.6733 (3)0.5099 (3)0.8425 (3)0.0508 (6)
C20.4489 (3)0.6004 (3)0.6854 (3)0.0548 (6)
C30.2921 (4)0.6795 (4)0.5949 (4)0.0698 (8)
H3A0.29540.61330.54960.084*
H3B0.20130.68170.66180.084*
C40.2003 (4)1.0979 (3)0.3766 (3)0.0657 (7)
H40.16651.20430.36300.079*
C50.2751 (4)0.9038 (4)0.3298 (3)0.0695 (8)
H50.30660.83980.28070.083*
C60.9842 (3)0.3090 (3)0.9519 (3)0.0543 (6)
H6A1.06580.26111.03110.065*
H6B0.94390.22610.97110.065*
C71.0658 (3)0.3532 (3)0.8017 (3)0.0501 (6)
C81.1780 (4)0.2127 (3)0.7691 (3)0.0629 (7)
C91.2994 (7)0.0845 (7)0.8962 (5)0.199 (4)
H9A1.36600.13110.90960.298*
H9B1.3679−0.00420.87440.298*
H9C1.24300.04370.98680.298*
C101.2626 (5)0.2749 (5)0.6225 (4)0.0910 (11)
H10A1.33250.32080.63170.136*
H10B1.18160.35810.54220.136*
H10C1.32720.18530.60080.136*
C111.0686 (7)0.1417 (8)0.7445 (8)0.154 (3)
H11A1.13600.05220.72350.231*
H11B0.99210.22610.66090.231*
H11C1.00970.10280.83380.231*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0740 (15)0.0541 (13)0.0763 (16)−0.0174 (12)−0.0189 (12)−0.0300 (12)
N20.0678 (14)0.0555 (13)0.0776 (16)−0.0112 (11)−0.0206 (12)−0.0341 (12)
N30.0551 (12)0.0475 (11)0.0590 (13)−0.0186 (9)−0.0090 (10)−0.0209 (10)
N40.0947 (18)0.0605 (14)0.0618 (14)−0.0268 (13)0.0001 (13)−0.0315 (12)
N50.0926 (19)0.0611 (15)0.0560 (14)−0.0159 (13)−0.0140 (13)−0.0200 (12)
O10.0788 (13)0.0500 (11)0.0763 (13)−0.0282 (10)0.0123 (11)−0.0161 (10)
S10.0575 (4)0.0554 (4)0.0780 (5)−0.0157 (3)−0.0043 (3)−0.0359 (4)
S20.0656 (4)0.0655 (5)0.0606 (4)−0.0234 (3)−0.0027 (3)−0.0359 (4)
C10.0536 (13)0.0487 (13)0.0494 (13)−0.0200 (11)0.0021 (11)−0.0222 (11)
C20.0572 (14)0.0470 (14)0.0568 (14)−0.0238 (12)−0.0020 (11)−0.0175 (11)
C30.0673 (17)0.0545 (15)0.0793 (19)−0.0301 (14)−0.0174 (15)−0.0138 (14)
C40.0773 (18)0.0486 (15)0.0634 (17)−0.0160 (13)−0.0089 (14)−0.0239 (13)
C50.0795 (19)0.0606 (17)0.0645 (18)−0.0124 (14)−0.0127 (14)−0.0336 (15)
C60.0585 (14)0.0493 (13)0.0493 (14)−0.0200 (11)−0.0091 (11)−0.0161 (11)
C70.0472 (12)0.0462 (13)0.0537 (14)−0.0198 (10)−0.0097 (10)−0.0162 (11)
C80.0658 (16)0.0536 (15)0.0588 (16)−0.0192 (13)0.0017 (13)−0.0216 (13)
C90.181 (6)0.165 (5)0.085 (3)0.104 (5)−0.051 (3)−0.063 (3)
C100.095 (3)0.095 (3)0.082 (2)−0.037 (2)0.021 (2)−0.046 (2)
C110.170 (5)0.186 (5)0.237 (7)−0.129 (5)0.117 (5)−0.176 (6)

Geometric parameters (Å, °)

N1—C21.274 (3)C5—H50.9300
N1—N21.387 (3)C6—C71.516 (4)
N2—C11.290 (3)C6—H6A0.9700
N3—C51.313 (4)C6—H6B0.9700
N3—N41.347 (3)C7—C81.517 (4)
N3—C31.456 (3)C8—C91.482 (5)
N4—C41.314 (4)C8—C101.515 (4)
N5—C51.310 (4)C8—C111.544 (5)
N5—C41.332 (4)C9—H9A0.9600
O1—C71.205 (3)C9—H9B0.9600
S1—C11.715 (3)C9—H9C0.9600
S1—C21.728 (3)C10—H10A0.9600
S2—C11.751 (3)C10—H10B0.9600
S2—C61.799 (3)C10—H10C0.9600
C2—C31.498 (4)C11—H11A0.9600
C3—H3A0.9700C11—H11B0.9600
C3—H3B0.9700C11—H11C0.9600
C4—H40.9300
C2—N1—N2113.0 (2)C7—C6—H6B108.8
C1—N2—N1111.5 (2)S2—C6—H6B108.8
C5—N3—N4109.3 (2)H6A—C6—H6B107.7
C5—N3—C3130.1 (3)O1—C7—C6120.5 (2)
N4—N3—C3120.6 (2)O1—C7—C8122.2 (2)
C4—N4—N3102.1 (2)C6—C7—C8117.3 (2)
C5—N5—C4102.3 (2)C9—C8—C10111.0 (4)
C1—S1—C286.46 (12)C9—C8—C7110.6 (3)
C1—S2—C698.80 (12)C10—C8—C7110.9 (2)
N2—C1—S1114.8 (2)C9—C8—C11110.8 (5)
N2—C1—S2124.2 (2)C10—C8—C11106.0 (3)
S1—C1—S2121.01 (15)C7—C8—C11107.3 (3)
N1—C2—C3121.9 (3)C8—C9—H9A109.5
N1—C2—S1114.2 (2)C8—C9—H9B109.5
C3—C2—S1123.9 (2)H9A—C9—H9B109.5
N3—C3—C2112.9 (2)C8—C9—H9C109.5
N3—C3—H3A109.0H9A—C9—H9C109.5
C2—C3—H3A109.0H9B—C9—H9C109.5
N3—C3—H3B109.0C8—C10—H10A109.5
C2—C3—H3B109.0C8—C10—H10B109.5
H3A—C3—H3B107.8H10A—C10—H10B109.5
N4—C4—N5115.0 (3)C8—C10—H10C109.5
N4—C4—H4122.5H10A—C10—H10C109.5
N5—C4—H4122.5H10B—C10—H10C109.5
N5—C5—N3111.1 (3)C8—C11—H11A109.5
N5—C5—H5124.4C8—C11—H11B109.5
N3—C5—H5124.4H11A—C11—H11B109.5
C7—C6—S2113.74 (17)C8—C11—H11C109.5
C7—C6—H6A108.8H11A—C11—H11C109.5
S2—C6—H6A108.8H11B—C11—H11C109.5
C2—N1—N2—C10.3 (4)S1—C2—C3—N353.9 (4)
C5—N3—N4—C40.9 (3)N3—N4—C4—N5−1.1 (4)
C3—N3—N4—C4−179.3 (2)C5—N5—C4—N40.9 (4)
N1—N2—C1—S1−1.4 (3)C4—N5—C5—N3−0.3 (4)
N1—N2—C1—S2179.3 (2)N4—N3—C5—N5−0.4 (4)
C2—S1—C1—N21.6 (2)C3—N3—C5—N5179.8 (3)
C2—S1—C1—S2−179.13 (18)C1—S2—C6—C771.9 (2)
C6—S2—C1—N213.2 (3)S2—C6—C7—O115.0 (3)
C6—S2—C1—S1−166.03 (16)S2—C6—C7—C8−165.12 (19)
N2—N1—C2—C3−177.4 (3)O1—C7—C8—C9129.1 (4)
N2—N1—C2—S10.9 (3)C6—C7—C8—C9−50.8 (5)
C1—S1—C2—N1−1.4 (2)O1—C7—C8—C105.4 (4)
C1—S1—C2—C3176.9 (2)C6—C7—C8—C10−174.5 (2)
C5—N3—C3—C2105.8 (3)O1—C7—C8—C11−109.9 (4)
N4—N3—C3—C2−74.1 (4)C6—C7—C8—C1170.2 (4)
N1—C2—C3—N3−127.9 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2060).

References

  • Hu, Z.-Q., Yang, Y.-X., Shang, Y.-Q., Zhou, K. & Xu, L.-Z. (2006). Acta Cryst. E62, o3457–o3458.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXTL Version 5.10. Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wei, Q.-L., He, F.-J., Lin, Y.-S. & Bi, S. (2007). Acta Cryst. E63, o3649.
  • Xu, L.-Z., Li, W.-H., Si, G.-D., Zhu, C.-Y., Li, K. & Hou, B.-R. (2005). Chem. Res. Chin. Univ.21, 444–446.
  • Xu, L.-Z., Shang, Y.-Q., Yu, G.-P., Li, K. & Si, G.-D. (2006). Chin. J. Struct. Chem.25, 673–676.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography