PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o513.
Published online 2008 January 25. doi:  10.1107/S1600536807068687
PMCID: PMC2960311

1-Furoyl-3-methyl-3-phenyl­thio­urea

Abstract

The title compound, C13H12N2O2S, crystallizes with two independent mol­ecules in the asymmetric unit. The two mol­ecules differ in the conformation of the thio­carbonyl and carbonyl groups, and show the typical geometric parameters of substituted thio­urea derivatives. The crystal structure is mainly stabilized by inter­molecular N—H(...)O hydrogen bonding.

Related literature

For general background, see: Estévez-Hernández et al. (2007 [triangle]); Otazo et al. (2001 [triangle]). For related structures, see: Koch et al. (1995 [triangle]); Morales et al. (1997 [triangle]). For synthesis, see: Otazo et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o513-scheme1.jpg

Experimental

Crystal data

  • C13H12N2O2S
  • M r = 260.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o513-efi1.jpg
  • a = 10.242 (1) Å
  • b = 13.525 (1) Å
  • c = 18.432 (2) Å
  • β = 96.115 (4)°
  • V = 2538.7 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 150 (2) K
  • 0.12 × 0.08 × 0.06 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 23939 measured reflections
  • 4440 independent reflections
  • 2828 reflections with I > 2σ(I)
  • R int = 0.093

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.117
  • S = 1.01
  • 4440 reflections
  • 327 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: HKL DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068687/xu2395sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068687/xu2395Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, Brazil, for allowing X-ray data collection. The authors acknowledge financial support from the Brazilian agency CAPES (project 018/05).

supplementary crystallographic information

Comment

Substituted N-acylthioureas have been a subject of investigations, due to their ability to form stable metal complexes and as ionophores in potenciometric and amperometric sensors for Cd(II), Hg(II) and Pb(II) (Otazo et al., 2001; Estévez-Hernández et al., 2007). The title compound, (I) (Fig. 1), is another example of our newly synthesized furoylthiourea derivatives, which shows outstanding complexation properties.

The main bond lengths and angles are given in Table 1, and are within the ranges obtained for similar compounds (Koch et al., 1995; Morales et al., 1997). The C—S and C3—O1, C16—O3 bonds show typical double-bond character. However, the C—N bond lengths, C2—N1, C2—N2, C3—N2, and the corresponding lengths for the other molecule are shorter than the normal C—N single-bond length of about 1.48 Å. These results can be explained by the existence of resonance in this part of the molecule. The crystal structure is stabilized by intermolecular N2—H2···O3 and N4—H4···O1 hydrogen-bonds (Table 2) between asymmetric units (Fig. 2).

The dihedral angles of two independent molecules between the furan and benzene ring planes are 67.8 (1)° and 82.8 (1)°, respectively. In addition, the conformation with respect to the thiocarbonyl and carbonyl moieties is twisted, as reflected by the torsion angles O1—C3—N2—C2 and C3—N2—C2—N1 of 0.3 (4) and -66.0 (3)° for one molecule, and O3—C16—N4—C15 and C16—N4—C15—N3 of -21.2 (4) and 61.9 (3)° for the other one.

Experimental

The title compound, (I), was synthesized according to a procedure described by Otazo et al. (2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with the appropriate amine. The resulting solid product was crystallized from a dichlorometane-methanol (1:1) mixture yielding X-ray quality single crystals (m.p. 374.5 K). Elemental analysis for C13H12N2O2S found: C 55.7, H 7.5, N 9.6, S 22.1%; calculated: C 56.34, H 7.43, N 9.4, S 21.5%.

Refinement

H atoms were placed in calculated positions with N—H = 0.88 Å and C—H = 0.95 Å (aromatic) or 0.98 Å (methyl), and refined in riding model, Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C,N) for others.

Figures

Fig. 1.
The molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Intermolecular interaction observed between asymmetric units. Hydrogen-bonding is indicated by a dashed line.

Crystal data

C13H12N2O2SF000 = 1088
Mr = 260.31Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17369 reflections
a = 10.242 (1) Åθ = 2.9–26.0º
b = 13.525 (1) ŵ = 0.25 mm1
c = 18.432 (2) ÅT = 150 (2) K
β = 96.115 (4)ºPrism, colourless
V = 2538.7 (4) Å30.12 × 0.08 × 0.06 mm
Z = 8

Data collection

Nonius KappaCCD diffractometerRint = 0.093
CCD scansθmax = 25.0º
Absorption correction: noneθmin = 3.2º
23939 measured reflectionsh = −12→12
4440 independent reflectionsk = −15→16
2828 reflections with I > 2σ(I)l = −21→21

Refinement

Refinement on F2H-atom parameters constrained
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0586P)2 + 0.0231P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.046(Δ/σ)max = 0.004
wR(F2) = 0.117Δρmax = 0.26 e Å3
S = 1.01Δρmin = −0.39 e Å3
4440 reflectionsExtinction correction: none
327 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2294 (3)0.8708 (2)0.23749 (18)0.0532 (8)
H1A0.29260.89390.20490.08*
H1B0.27490.85930.28630.08*
H1C0.16110.9210.24030.08*
C140.2728 (3)0.3832 (2)0.26750 (17)0.0560 (9)
H14A0.34570.42050.25060.084*
H14B0.21450.42850.29030.084*
H14C0.22340.35020.22590.084*
C20.1449 (2)0.76315 (19)0.13688 (16)0.0351 (7)
C150.3838 (2)0.22823 (19)0.29748 (14)0.0339 (6)
C30.1874 (2)0.58628 (18)0.12911 (14)0.0302 (6)
C160.3287 (2)0.10391 (18)0.38668 (14)0.0309 (6)
C40.1288 (2)0.49232 (18)0.10477 (14)0.0298 (6)
C170.3758 (2)0.00693 (18)0.41385 (14)0.0302 (6)
C50.0051 (2)0.4590 (2)0.09248 (17)0.0452 (8)
H5−0.07260.49630.09570.054*
C180.4789 (2)−0.04906 (19)0.40147 (15)0.0355 (7)
H180.547−0.03160.37270.043*
C60.0122 (3)0.3574 (2)0.07366 (17)0.0450 (8)
H6−0.05920.31320.06260.054*
C190.4675 (2)−0.13922 (19)0.43928 (16)0.0386 (7)
H190.5266−0.19350.44130.046*
C70.1390 (3)0.3370 (2)0.07479 (15)0.0398 (7)
H70.1730.2740.06370.048*
C200.3574 (3)−0.13276 (19)0.47157 (16)0.0396 (7)
H200.3249−0.18330.50060.047*
C80.1275 (2)0.70935 (19)0.26202 (15)0.0341 (6)
C210.3303 (2)0.33719 (18)0.39653 (15)0.0341 (6)
C90.2181 (2)0.6730 (2)0.31625 (16)0.0389 (7)
H90.30790.69150.31790.047*
C220.4509 (3)0.34928 (19)0.43744 (17)0.0437 (7)
H220.53030.33390.41750.052*
C100.1775 (3)0.6096 (2)0.36825 (16)0.0463 (8)
H100.23960.58420.40560.056*
C230.4529 (4)0.3848 (2)0.5091 (2)0.0604 (10)
H230.53430.3930.53840.072*
C110.0467 (3)0.5832 (2)0.36605 (17)0.0445 (7)
H110.01910.53940.40170.053*
C240.3370 (4)0.4078 (2)0.53737 (19)0.0632 (10)
H240.33880.43240.58570.076*
C12−0.0436 (3)0.6203 (2)0.31213 (18)0.0451 (8)
H12−0.13330.60170.31060.054*
C250.2198 (4)0.3950 (2)0.4957 (2)0.0555 (9)
H250.14030.41110.51520.067*
C13−0.0042 (2)0.6846 (2)0.26012 (16)0.0415 (7)
H13−0.06660.71130.22360.05*
C260.2157 (3)0.3593 (2)0.42587 (17)0.0428 (7)
H260.13350.34980.39770.051*
O10.29958 (15)0.59531 (12)0.15853 (10)0.0392 (5)
O30.21895 (15)0.13554 (12)0.39322 (10)0.0390 (5)
O20.21429 (15)0.41764 (12)0.09384 (10)0.0385 (5)
O40.29752 (15)−0.04324 (13)0.45720 (10)0.0399 (5)
N10.16896 (19)0.77824 (15)0.20905 (13)0.0362 (5)
N30.32476 (19)0.30851 (16)0.32120 (12)0.0370 (6)
N20.10521 (19)0.66592 (15)0.11680 (12)0.0352 (6)
H20.02510.65620.09570.042*
N40.41900 (18)0.15394 (15)0.35015 (12)0.0324 (5)
H40.50260.1390.360.039*
S10.16001 (7)0.84691 (5)0.07255 (4)0.0453 (2)
S20.41662 (7)0.21011 (6)0.21239 (4)0.0489 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.068 (2)0.0363 (18)0.054 (2)−0.0138 (14)−0.0010 (16)−0.0080 (15)
C140.077 (2)0.052 (2)0.039 (2)0.0213 (16)0.0060 (16)0.0122 (16)
C20.0294 (13)0.0317 (16)0.044 (2)0.0030 (11)0.0016 (12)0.0027 (14)
C150.0277 (13)0.0402 (17)0.0344 (17)0.0004 (11)0.0063 (11)0.0031 (14)
C30.0323 (15)0.0325 (16)0.0268 (16)0.0011 (11)0.0080 (11)−0.0008 (12)
C160.0300 (14)0.0341 (16)0.0286 (17)−0.0020 (11)0.0037 (11)−0.0026 (12)
C40.0317 (14)0.0283 (15)0.0295 (16)0.0059 (11)0.0031 (11)0.0014 (12)
C170.0274 (13)0.0321 (15)0.0308 (17)−0.0074 (11)0.0014 (11)0.0004 (12)
C50.0313 (15)0.0412 (18)0.062 (2)0.0021 (12)0.0024 (13)−0.0063 (16)
C180.0315 (14)0.0323 (16)0.0444 (18)−0.0015 (12)0.0122 (12)0.0007 (14)
C60.0445 (17)0.0326 (17)0.056 (2)−0.0088 (12)−0.0020 (14)−0.0038 (15)
C190.0378 (15)0.0346 (17)0.0436 (19)0.0020 (12)0.0062 (13)−0.0012 (14)
C70.0495 (18)0.0266 (16)0.0420 (19)−0.0019 (13)−0.0013 (13)−0.0048 (13)
C200.0490 (17)0.0304 (16)0.0389 (19)−0.0007 (12)0.0028 (13)0.0062 (13)
C80.0402 (15)0.0288 (15)0.0334 (17)−0.0011 (11)0.0045 (12)−0.0053 (13)
C210.0412 (15)0.0284 (15)0.0334 (18)−0.0001 (11)0.0070 (12)0.0053 (13)
C90.0358 (15)0.0438 (17)0.0376 (18)−0.0029 (12)0.0066 (13)−0.0033 (14)
C220.0453 (17)0.0353 (17)0.049 (2)−0.0010 (13)−0.0010 (14)0.0050 (15)
C100.0451 (17)0.053 (2)0.041 (2)0.0050 (14)0.0053 (14)0.0009 (16)
C230.084 (3)0.0342 (19)0.056 (3)−0.0078 (16)−0.0251 (19)0.0051 (17)
C110.0477 (17)0.0416 (18)0.047 (2)0.0020 (13)0.0177 (14)−0.0003 (15)
C240.123 (3)0.0331 (19)0.035 (2)0.0044 (19)0.012 (2)0.0034 (15)
C120.0379 (16)0.0438 (18)0.055 (2)−0.0028 (13)0.0122 (14)−0.0054 (16)
C250.081 (2)0.0375 (19)0.052 (2)0.0048 (16)0.0279 (19)0.0048 (17)
C130.0358 (15)0.0379 (17)0.050 (2)0.0019 (12)0.0020 (13)−0.0054 (15)
C260.0473 (16)0.0383 (18)0.045 (2)0.0007 (13)0.0127 (14)0.0042 (15)
O10.0276 (10)0.0407 (11)0.0491 (13)−0.0014 (8)0.0033 (8)−0.0089 (9)
O30.0271 (10)0.0377 (11)0.0534 (14)0.0017 (8)0.0096 (8)0.0049 (9)
O20.0369 (10)0.0320 (11)0.0463 (13)0.0014 (8)0.0033 (8)−0.0040 (9)
O40.0359 (10)0.0405 (12)0.0448 (13)0.0017 (8)0.0111 (8)0.0081 (9)
N10.0414 (12)0.0281 (13)0.0381 (16)−0.0031 (9)−0.0002 (10)−0.0016 (11)
N30.0417 (12)0.0370 (14)0.0327 (15)0.0092 (10)0.0060 (10)0.0061 (11)
N20.0304 (11)0.0299 (13)0.0431 (15)0.0005 (9)−0.0060 (9)−0.0039 (11)
N40.0249 (11)0.0361 (13)0.0367 (15)0.0017 (9)0.0051 (9)0.0079 (11)
S10.0509 (4)0.0379 (4)0.0480 (5)0.0009 (3)0.0090 (3)0.0061 (4)
S20.0498 (4)0.0634 (6)0.0351 (5)0.0115 (4)0.0115 (3)0.0031 (4)

Geometric parameters (Å, °)

C1—N11.468 (3)C19—H190.95
C1—H1A0.98C7—O21.360 (3)
C1—H1B0.98C7—H70.95
C1—H1C0.98C20—O41.370 (3)
C14—N31.473 (3)C20—H200.95
C14—H14A0.98C8—C91.380 (4)
C14—H14B0.98C8—C131.386 (3)
C14—H14C0.98C8—N11.446 (3)
C2—N11.342 (3)C21—C261.376 (4)
C2—N21.414 (3)C21—C221.387 (4)
C2—S11.659 (3)C21—N31.437 (3)
C15—N31.339 (3)C9—C101.383 (4)
C15—N41.417 (3)C9—H90.95
C15—S21.657 (3)C22—C231.404 (5)
C3—O11.223 (3)C22—H220.95
C3—N21.371 (3)C10—C111.383 (4)
C3—C41.456 (3)C10—H100.95
C16—O31.221 (3)C23—C241.381 (5)
C16—N41.378 (3)C23—H230.95
C16—C171.467 (3)C11—C121.378 (4)
C4—C51.341 (3)C11—H110.95
C4—O21.366 (3)C24—C251.365 (5)
C17—C181.338 (3)C24—H240.95
C17—O41.371 (3)C12—C131.386 (4)
C5—C61.421 (4)C12—H120.95
C5—H50.95C25—C261.371 (4)
C18—C191.416 (4)C25—H250.95
C18—H180.95C13—H130.95
C6—C71.326 (3)C26—H260.95
C6—H60.95N2—H20.88
C19—C201.333 (4)N4—H40.88
N1—C1—H1A109.5C9—C8—N1119.7 (2)
N1—C1—H1B109.5C13—C8—N1119.6 (2)
H1A—C1—H1B109.5C26—C21—C22120.5 (3)
N1—C1—H1C109.5C26—C21—N3119.4 (2)
H1A—C1—H1C109.5C22—C21—N3119.9 (2)
H1B—C1—H1C109.5C8—C9—C10119.6 (2)
N3—C14—H14A109.5C8—C9—H9120.2
N3—C14—H14B109.5C10—C9—H9120.2
H14A—C14—H14B109.5C21—C22—C23118.3 (3)
N3—C14—H14C109.5C21—C22—H22120.8
H14A—C14—H14C109.5C23—C22—H22120.8
H14B—C14—H14C109.5C9—C10—C11120.1 (3)
N1—C2—N2114.7 (2)C9—C10—H10119.9
N1—C2—S1125.7 (2)C11—C10—H10119.9
N2—C2—S1119.6 (2)C24—C23—C22120.3 (3)
N3—C15—N4116.2 (2)C24—C23—H23119.8
N3—C15—S2125.0 (2)C22—C23—H23119.8
N4—C15—S2118.77 (19)C12—C11—C10120.0 (3)
O1—C3—N2121.7 (2)C12—C11—H11120
O1—C3—C4124.1 (2)C10—C11—H11120
N2—C3—C4114.2 (2)C25—C24—C23119.9 (3)
O3—C16—N4123.3 (2)C25—C24—H24120
O3—C16—C17123.5 (2)C23—C24—H24120
N4—C16—C17113.1 (2)C11—C12—C13120.3 (3)
C5—C4—O2109.6 (2)C11—C12—H12119.9
C5—C4—C3134.1 (2)C13—C12—H12119.9
O2—C4—C3116.2 (2)C24—C25—C26120.7 (3)
C18—C17—O4109.9 (2)C24—C25—H25119.7
C18—C17—C16133.2 (2)C26—C25—H25119.7
O4—C17—C16116.7 (2)C12—C13—C8119.3 (3)
C4—C5—C6107.1 (2)C12—C13—H13120.4
C4—C5—H5126.4C8—C13—H13120.4
C6—C5—H5126.4C25—C26—C21120.2 (3)
C17—C18—C19107.2 (2)C25—C26—H26119.9
C17—C18—H18126.4C21—C26—H26119.9
C19—C18—H18126.4C7—O2—C4106.06 (19)
C7—C6—C5105.8 (2)C20—O4—C17105.79 (19)
C7—C6—H6127.1C2—N1—C8122.3 (2)
C5—C6—H6127.1C2—N1—C1120.6 (2)
C20—C19—C18106.3 (2)C8—N1—C1116.8 (2)
C20—C19—H19126.8C15—N3—C21124.2 (2)
C18—C19—H19126.8C15—N3—C14118.7 (2)
C6—C7—O2111.4 (2)C21—N3—C14116.0 (2)
C6—C7—H7124.3C3—N2—C2122.2 (2)
O2—C7—H7124.3C3—N2—H2118.9
C19—C20—O4110.8 (2)C2—N2—H2118.9
C19—C20—H20124.6C16—N4—C15123.24 (19)
O4—C20—H20124.6C16—N4—H4118.4
C9—C8—C13120.6 (3)C15—N4—H4118.4
O1—C3—C4—C5156.2 (3)N3—C21—C26—C25−174.3 (2)
N2—C3—C4—C5−23.3 (4)C6—C7—O2—C4−0.3 (3)
O1—C3—C4—O2−20.7 (4)C5—C4—O2—C7−0.3 (3)
N2—C3—C4—O2159.7 (2)C3—C4—O2—C7177.3 (2)
O3—C16—C17—C18165.5 (3)C19—C20—O4—C170.0 (3)
N4—C16—C17—C18−11.8 (4)C18—C17—O4—C200.4 (3)
O3—C16—C17—O4−9.2 (4)C16—C17—O4—C20176.3 (2)
N4—C16—C17—O4173.5 (2)N2—C2—N1—C8−14.4 (3)
O2—C4—C5—C60.8 (3)S1—C2—N1—C8166.46 (18)
C3—C4—C5—C6−176.3 (3)N2—C2—N1—C1170.9 (2)
O4—C17—C18—C19−0.7 (3)S1—C2—N1—C1−8.2 (3)
C16—C17—C18—C19−175.7 (3)C9—C8—N1—C2126.6 (3)
C4—C5—C6—C7−0.9 (3)C13—C8—N1—C2−56.9 (3)
C17—C18—C19—C200.7 (3)C9—C8—N1—C1−58.6 (3)
C5—C6—C7—O20.8 (3)C13—C8—N1—C1118.0 (3)
C18—C19—C20—O4−0.4 (3)N4—C15—N3—C2119.3 (3)
C13—C8—C9—C101.4 (4)S2—C15—N3—C21−161.15 (19)
N1—C8—C9—C10177.9 (2)N4—C15—N3—C14−173.3 (2)
C26—C21—C22—C23−0.2 (4)S2—C15—N3—C146.2 (3)
N3—C21—C22—C23175.1 (2)C26—C21—N3—C15−129.9 (3)
C8—C9—C10—C11−0.3 (4)C22—C21—N3—C1554.7 (3)
C21—C22—C23—C24−0.7 (4)C26—C21—N3—C1462.4 (3)
C9—C10—C11—C12−0.2 (4)C22—C21—N3—C14−112.9 (3)
C22—C23—C24—C250.7 (5)O1—C3—N2—C20.3 (4)
C10—C11—C12—C13−0.4 (4)C4—C3—N2—C2179.9 (2)
C23—C24—C25—C260.1 (5)N1—C2—N2—C3−66.0 (3)
C11—C12—C13—C81.4 (4)S1—C2—N2—C3113.1 (2)
C9—C8—C13—C12−2.0 (4)O3—C16—N4—C15−21.2 (4)
N1—C8—C13—C12−178.5 (2)C17—C16—N4—C15156.1 (2)
C24—C25—C26—C21−1.0 (4)N3—C15—N4—C1661.9 (3)
C22—C21—C26—C251.0 (4)S2—C15—N4—C16−117.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.882.543.331 (3)149
N4—H4···O1ii0.882.173.010 (2)159
C5—H5···O3i0.952.433.341 (3)161
C5—H5···O4i0.952.463.137 (3)128
C14—H14C···O20.982.593.227 (4)123
C18—H18···O1ii0.952.443.274 (3)147
C18—H18···O2ii0.952.553.167 (3)123

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2395).

References

  • Estévez-Hernández, O., Hidalgo, J. L., Reguera, E. & Naranjo, I. (2007). Sens. Actuators B, 120, 766–772.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Koch, K. R., Sacht, C. & Bourne, S. (1995). Inorg. Chim. Acta, 232, 109–115.
  • Morales, A. D., García-Granda, S., Esteva, J. R., Stevens, A. P. & Crespo, G. A. A. (1997). Acta Cryst. C53, IUC9700019.
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography