PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o509–o510.
Published online 2008 January 23. doi:  10.1107/S1600536807066470
PMCID: PMC2960307

4′-Methyl-3-(4-nitro­phen­yl)-4-phenyl-4,5,1′,2′,3′,4′-hexa­hydro­spiro­[isoxazole-5,2′-naphthalen]-1′-one

Abstract

The title compound, C25H20N2O4, is a new spiro-isoxazoline derivative. It contains a five-membered isoxazoline ring (A), a tetra­lone unit (E and D), a 4-nitro­phenyl substituent (B), and a phenyl ring (C). The isoxazoline ring (A) has an envelope conformation, while the cyclo­hexenone ring (D) has an inter­mediate sofa/half-chair conformation. The aromatic ring of the 4-nitro­phenyl substituent (B) is inclined at an angle of 78.97 (10)° to the phenyl ring (C). The rigid pharmacophore site, Osp 2—C—C—Osp 3, is characterized by an O(...)O distance of 3.113 (2) Å and an O—C—C—O torsion angle of 97.8 (2)°. In the crystal structure, mol­ecules are linked by C—H(...)O contacts.

Related literature

For the crystal structure of a very similar compound, 3-(4-chloro­phen­yl)-4-(4-phenyl-3′,4′-dihydro-1′H,4H-spiro­[isoxazole-5,2′-naphthalen]-1′-one, see: Subbiah Pandi et al. (2001 [triangle]). For related literature, see: Anaflous et al. (2004 [triangle]); Arnold et al. (1947 [triangle]); Bakavoli et al. (2005 [triangle]); Chaouni-Benabdallah et al. (2001 [triangle]); Chenera et al. (1993 [triangle]); Debaerdemaeker et al. (1977 [triangle]); Ellis (1997 [triangle]); Howe & Shelton (1990 [triangle]); Katritzky et al. (2003 [triangle]); Kerbal et al. (1990 [triangle]); Kooijman et al. (1984 [triangle]); Seifert et al. (1976 [triangle]); Smietana et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o509-scheme1.jpg

Experimental

Crystal data

  • C25H20N2O4
  • M r = 412.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o509-efi1.jpg
  • a = 10.6567 (15) Å
  • b = 15.7071 (16) Å
  • c = 12.7259 (15) Å
  • β = 106.258 (10)°
  • V = 2045.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 173 (2) K
  • 0.40 × 0.37 × 0.27 mm

Data collection

  • Stoe IPDSII diffractometer
  • Absorption correction: none
  • 20256 measured reflections
  • 3798 independent reflections
  • 2837 reflections with I > 2σ(I)
  • R int = 0.076

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.123
  • S = 1.01
  • 3798 reflections
  • 283 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066470/bg2153sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066470/bg2153Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by grants from the Ministry of Education of the Kingdom of Morocco (PROTARS No. P1T2/27 and Projet Globale de Recherche of the Université Mohamed Premier PGR-UMP-BH-2005).

supplementary crystallographic information

Comment

Spiroisoxazolines display interesting biological properties such as herbicidal, plant-growth regulatory and antitumour activities (Howe & Shelton, 1990; Smietana et al., 1999). Many 4-chromanone derivatives are versatile intermediates for the synthesis of natural products such as brazillin, hematoxylin, ripariochromene, clausenin, calonlide A and inophyllum B (Kooijman et al., 1984; Ellis et al., 1997; Chenera et al., 1993). Chromanone heterocycles have also attracted much attention owing to their important pharmacological properties (Chaouni-Benabdallah et al., 2001). As a extention of our pharmacological studies on the structure-antituburcular activity relationships in 3-armed imidazo[1,2-a]pyrimidines (Debaerdemaeker et al., 1977; Seifert et al., 1976; Anaflous et al., 2004), we synthesized 4'-methyl-4-(4-phenyl)-3-(4-nitrophenyl)-3',4'- dihydro-1'H,4H-spiro[isoxazole-5,2'-naphthalen]-1'-one (III). Some analogous structures have been reported previously (Katritzky et al., 2003; Bakavoli et al., 2005). The title compound, (III), was prepared by the action of para-nitro- benzaldoxime (II), on 4-methyl-2-[(E)-phenylmethylidene]-3,4- dihydro-1(2H)-naphthalenone (I).

The molecular structure of compound (III) is illustrated in Fig. 1. It is composed of a five-membered isoxazoline ring (A), a tetralone moiety (E & D), a 4-nitrophenyl substituent (B), and a phenyl ring (C). Ring A [C1,O2,N1,C12,C11] has an envelope conformation, with atom C1 at the flap and lieing out of the best least-squares plane through the other four atoms by 0.259 (2) Å. Ring D [C1—C4,C9,C10] has an intermediate sofa/half-chair conformation with atoms C1 and C2 out of the best least-squares plane through the other four atoms [planar to within 0.028 (2) Å] by -0.111 (2) and 0.538 (2) Å, respectively. The best least-squares plane through atoms O2,N1,C12,C11 [planar to within 0.008 (2) Å], of the isoxazoline ring A, is inclined to the best least-squares planes through phenyl ring E (C4—C9) by 86.95 (11)°, and to the best least-squares plane through rings B (C13—C18), and C (C19—C24) by 7.47 (11) and 83.47 (11) °, respectively. Ring C is inclined to rings B and E by 78.97 (10)° and 78.66 (11) °, respectively.

The rigid pharmacophore site, O(sp2)-C—C—O(sp3), is characterized by an O···O spatial distance of 3.113 (2) Å (O1···O2), with a torsion angle (O2—C1—C10—O1) of 97.8 (2) °. The bond distances and angles are very similar to those observed in 3-(4-chlorophenyl)-4-(4-phenyl-3',4'-dihydro- 1'H,4H-spiro[isoxazole-5,2'-naphthalen]-1'-one (Subbiah Pandi et al., 2001).

In the crystal structure of (III) symmetry related molecules are linked by intermolecular C—H···O contacts (Table 1 and Fig. 2).

Experimental

Compound (III) was synthesized by the action of para-nitro- benzaldoxime (II) on 4-methyl-2-[(E)-phenylmethylidene]-3,4-dihydro-1(2H)- naphthalenone (I). The latter was prepared according to the method described previously (Arnold et al., 1947). Its conformational analysis has also been reported (Kerbal et al., 1990).

In a 100 ml flask, 2 mmoles (0.5 g) of (I) and 0.4 g (2.4 mmoles) mmoles of (II) were dissolved in 20 ml of chloroform. The mixture was cooled to 0°C under magnetic stirring in an ice bath. Then 15 ml of bleach at 18° was added in small doses without exceeding 5°C. The mixture was left under magnetic stirring for 16 h at room temperature, then washed with water until the pH was neutral. It was then dried on sodium sulfate. The solvent was evaporated with a rotating evaporator and the oily residue obtained dissolved in ethanol. The precipitated cycloadduct was then analysed by TLC, which indicated the limited formation of two of the 4 stereoisomers for (III) in a 9:1 ratio. The major stereoisomer, (III), was then crystallized in ethanol giving colourless block-like crystals (61% yield), M.p. = 150–153 °C.

Refinement

The H atoms were included in calculated positons and treated as riding atoms with C—H = 0.95 - 1.00 Å and Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing the crystallographic atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
The crystal packing of (I), viewed down the b axis. The C—H···O contacts are shown as dashed lines. H atoms not involved in C—H···O contacts have been omitted for clarity.
Fig. 3.
The formation of the title compound.

Crystal data

C25H20N2O4F000 = 864
Mr = 412.43Dx = 1.340 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11994 reflections
a = 10.6567 (15) Åθ = 1.7–29.4º
b = 15.7071 (16) ŵ = 0.09 mm1
c = 12.7259 (15) ÅT = 173 (2) K
β = 106.258 (10)ºPlate, colourless
V = 2045.0 (4) Å30.40 × 0.37 × 0.27 mm
Z = 4

Data collection

Stoe IPDSII diffractometer2837 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.076
Monochromator: graphiteθmax = 25.5º
T = 173(2) Kθmin = 2.1º
[var phi] and ω scansh = −12→12
Absorption correction: nonek = −18→19
20256 measured reflectionsl = −15→15
3798 independent reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049  w = 1/[σ2(Fo2) + (0.0704P)2 + 0.2039P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.52 e Å3
3798 reflectionsΔρmin = −0.21 e Å3
283 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0074 (14)
Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.47898 (16)0.55329 (9)0.36239 (13)0.0422 (5)
O20.32596 (13)0.43601 (8)0.17246 (10)0.0297 (4)
O3−0.1326 (2)0.35498 (16)0.60945 (19)0.0861 (9)
O4−0.26968 (17)0.41232 (14)0.47131 (16)0.0632 (7)
N10.21389 (15)0.44017 (10)0.20955 (13)0.0281 (5)
N2−0.1598 (2)0.38712 (13)0.51976 (18)0.0490 (8)
C10.44094 (18)0.42092 (11)0.26695 (15)0.0248 (5)
C20.5302 (2)0.36112 (12)0.22914 (17)0.0338 (7)
C30.5692 (2)0.39637 (14)0.13022 (19)0.0415 (8)
C40.62172 (19)0.48610 (13)0.15022 (16)0.0333 (6)
C50.7052 (2)0.51874 (16)0.09383 (19)0.0464 (8)
C60.7473 (2)0.60217 (18)0.1075 (2)0.0556 (9)
C70.7069 (3)0.65532 (17)0.1772 (2)0.0541 (9)
C80.6247 (2)0.62468 (14)0.23505 (18)0.0414 (7)
C90.58332 (19)0.54037 (12)0.22298 (15)0.0295 (6)
C100.50110 (18)0.50975 (12)0.29134 (15)0.0273 (6)
C110.38311 (18)0.39083 (11)0.35863 (15)0.0239 (5)
C120.24282 (18)0.41746 (11)0.30968 (15)0.0243 (5)
C130.13979 (19)0.41296 (11)0.36551 (16)0.0268 (6)
C140.1696 (2)0.39216 (13)0.47532 (17)0.0348 (6)
C150.0720 (2)0.38411 (14)0.52679 (18)0.0395 (7)
C16−0.0553 (2)0.39756 (13)0.46671 (18)0.0352 (7)
C17−0.0876 (2)0.42136 (15)0.35887 (19)0.0424 (7)
C180.0101 (2)0.42881 (14)0.30805 (17)0.0379 (7)
C190.39453 (18)0.29696 (11)0.38701 (15)0.0247 (5)
C200.48296 (19)0.26972 (12)0.48285 (16)0.0299 (6)
C210.4922 (2)0.18425 (14)0.50951 (18)0.0388 (7)
C220.4143 (2)0.12540 (13)0.4410 (2)0.0396 (7)
C230.3264 (2)0.15185 (13)0.34565 (19)0.0395 (7)
C240.3160 (2)0.23724 (12)0.31901 (17)0.0337 (6)
C250.6582 (3)0.33530 (18)0.0947 (2)0.0652 (11)
H2A0.485600.305700.209300.0410*
H2B0.610000.351200.290100.0410*
H30.487100.399700.068500.0500*
H50.733900.483000.044900.0560*
H60.804800.623000.068300.0670*
H70.735300.712900.185500.0650*
H80.596300.661300.283300.0500*
H110.422000.425000.426300.0290*
H140.258100.383300.515800.0420*
H150.092400.369600.602200.0470*
H17−0.176000.432500.319800.0510*
H18−0.011100.444900.233200.0450*
H200.537400.309800.530400.0360*
H210.552700.165900.575600.0470*
H220.421500.066700.459700.0480*
H230.272700.111400.298100.0470*
H240.254500.255300.253400.0400*
H25A0.620100.278100.087500.0980*
H25B0.743700.334500.149500.0980*
H25C0.668800.353500.024100.0980*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0591 (10)0.0291 (7)0.0472 (9)−0.0119 (7)0.0295 (8)−0.0113 (7)
O20.0284 (7)0.0377 (7)0.0232 (7)−0.0041 (6)0.0074 (6)0.0007 (5)
O30.0793 (15)0.1206 (19)0.0782 (15)0.0189 (13)0.0549 (13)0.0445 (14)
O40.0351 (10)0.0973 (14)0.0626 (12)−0.0111 (9)0.0225 (9)−0.0100 (10)
N10.0258 (9)0.0308 (8)0.0279 (9)−0.0031 (6)0.0080 (7)0.0005 (7)
N20.0529 (14)0.0509 (12)0.0537 (13)−0.0081 (10)0.0320 (11)−0.0020 (10)
C10.0249 (9)0.0252 (9)0.0233 (9)−0.0006 (7)0.0052 (8)−0.0002 (7)
C20.0381 (12)0.0280 (10)0.0394 (12)0.0007 (8)0.0174 (10)−0.0039 (9)
C30.0483 (14)0.0440 (12)0.0388 (13)−0.0024 (10)0.0229 (11)−0.0049 (9)
C40.0285 (10)0.0418 (11)0.0302 (10)−0.0004 (8)0.0090 (9)0.0048 (9)
C50.0398 (13)0.0619 (15)0.0413 (13)0.0004 (11)0.0177 (10)0.0084 (11)
C60.0426 (14)0.0763 (18)0.0515 (15)−0.0168 (12)0.0191 (12)0.0148 (13)
C70.0576 (16)0.0547 (15)0.0491 (15)−0.0289 (12)0.0134 (12)0.0060 (12)
C80.0447 (13)0.0410 (12)0.0370 (12)−0.0137 (10)0.0091 (10)0.0020 (9)
C90.0263 (10)0.0333 (10)0.0268 (10)−0.0055 (8)0.0039 (8)0.0031 (8)
C100.0267 (10)0.0266 (9)0.0275 (10)−0.0007 (7)0.0058 (8)−0.0012 (8)
C110.0247 (9)0.0228 (9)0.0241 (9)−0.0021 (7)0.0068 (8)−0.0025 (7)
C120.0256 (10)0.0192 (8)0.0266 (10)−0.0008 (7)0.0051 (8)0.0004 (7)
C130.0296 (10)0.0221 (9)0.0299 (10)0.0002 (7)0.0105 (8)0.0013 (7)
C140.0343 (11)0.0371 (11)0.0330 (11)0.0079 (9)0.0096 (9)0.0048 (9)
C150.0500 (14)0.0390 (11)0.0342 (12)0.0073 (10)0.0194 (10)0.0086 (9)
C160.0361 (12)0.0322 (10)0.0428 (12)−0.0045 (8)0.0200 (10)−0.0014 (9)
C170.0291 (11)0.0594 (14)0.0391 (12)−0.0026 (10)0.0103 (9)−0.0002 (10)
C180.0284 (11)0.0540 (13)0.0305 (11)0.0005 (9)0.0069 (9)0.0026 (9)
C190.0255 (9)0.0250 (9)0.0261 (9)0.0005 (7)0.0113 (8)0.0003 (7)
C200.0279 (10)0.0327 (10)0.0297 (11)0.0045 (8)0.0090 (8)0.0020 (8)
C210.0384 (12)0.0413 (12)0.0401 (12)0.0150 (10)0.0166 (10)0.0130 (10)
C220.0469 (13)0.0241 (10)0.0578 (14)0.0072 (9)0.0310 (12)0.0089 (10)
C230.0456 (13)0.0269 (10)0.0501 (14)−0.0027 (9)0.0201 (11)−0.0021 (9)
C240.0357 (11)0.0298 (11)0.0338 (11)−0.0027 (8)0.0070 (9)−0.0010 (8)
C250.080 (2)0.0611 (16)0.0703 (19)0.0055 (14)0.0470 (17)−0.0079 (14)

Geometric parameters (Å, °)

O1—C101.208 (2)C17—C181.376 (3)
O2—N11.403 (2)C19—C201.384 (3)
O2—C11.476 (2)C19—C241.387 (3)
O3—N21.207 (3)C20—C211.381 (3)
O4—N21.226 (3)C21—C221.378 (3)
N1—C121.275 (2)C22—C231.373 (3)
N2—C161.464 (3)C23—C241.380 (3)
C1—C21.508 (3)C2—H2A0.9900
C1—C101.531 (3)C2—H2B0.9900
C1—C111.539 (3)C3—H31.0000
C2—C31.535 (3)C5—H50.9500
C3—C41.512 (3)C6—H60.9500
C3—C251.505 (4)C7—H70.9500
C4—C51.388 (3)C8—H80.9500
C4—C91.401 (3)C11—H111.0000
C5—C61.380 (4)C14—H140.9500
C6—C71.372 (4)C15—H150.9500
C7—C81.379 (4)C17—H170.9500
C8—C91.391 (3)C18—H180.9500
C9—C101.477 (3)C20—H200.9500
C11—C121.509 (3)C21—H210.9500
C11—C191.515 (2)C22—H220.9500
C12—C131.467 (3)C23—H230.9500
C13—C141.383 (3)C24—H240.9500
C13—C181.393 (3)C25—H25A0.9800
C14—C151.381 (3)C25—H25B0.9800
C15—C161.374 (3)C25—H25C0.9800
C16—C171.370 (3)
N1—O2—C1108.91 (13)C20—C21—C22120.5 (2)
O2—N1—C12109.43 (15)C21—C22—C23119.8 (2)
O3—N2—O4123.6 (2)C22—C23—C24119.9 (2)
O3—N2—C16118.1 (2)C19—C24—C23120.73 (19)
O4—N2—C16118.3 (2)C1—C2—H2A109.00
O2—C1—C2107.10 (15)C1—C2—H2B109.00
O2—C1—C10102.94 (14)C3—C2—H2A109.00
O2—C1—C11104.46 (15)C3—C2—H2B109.00
C2—C1—C10111.51 (16)H2A—C2—H2B108.00
C2—C1—C11118.22 (15)C2—C3—H3107.00
C10—C1—C11111.11 (15)C4—C3—H3107.00
C1—C2—C3112.13 (16)C25—C3—H3106.00
C2—C3—C4111.76 (18)C4—C5—H5119.00
C2—C3—C25110.76 (19)C6—C5—H5119.00
C4—C3—C25114.2 (2)C5—C6—H6120.00
C3—C4—C5121.20 (19)C7—C6—H6120.00
C3—C4—C9121.04 (18)C6—C7—H7120.00
C5—C4—C9117.71 (19)C8—C7—H7120.00
C4—C5—C6121.2 (2)C7—C8—H8120.00
C5—C6—C7120.6 (2)C9—C8—H8120.00
C6—C7—C8119.6 (2)C1—C11—H11109.00
C7—C8—C9120.2 (2)C12—C11—H11109.00
C4—C9—C8120.67 (19)C19—C11—H11109.00
C4—C9—C10121.47 (17)C13—C14—H14120.00
C8—C9—C10117.84 (18)C15—C14—H14120.00
O1—C10—C1120.62 (18)C14—C15—H15121.00
O1—C10—C9121.90 (18)C16—C15—H15121.00
C1—C10—C9117.46 (16)C16—C17—H17121.00
C1—C11—C1299.37 (15)C18—C17—H17121.00
C1—C11—C19117.21 (15)C13—C18—H18120.00
C12—C11—C19111.87 (16)C17—C18—H18120.00
N1—C12—C11115.12 (17)C19—C20—H20120.00
N1—C12—C13119.54 (18)C21—C20—H20120.00
C11—C12—C13125.18 (16)C20—C21—H21120.00
C12—C13—C14120.63 (19)C22—C21—H21120.00
C12—C13—C18120.28 (18)C21—C22—H22120.00
C14—C13—C18119.09 (19)C23—C22—H22120.00
C13—C14—C15120.7 (2)C22—C23—H23120.00
C14—C15—C16118.6 (2)C24—C23—H23120.00
N2—C16—C15119.1 (2)C19—C24—H24120.00
N2—C16—C17118.8 (2)C23—C24—H24120.00
C15—C16—C17122.1 (2)C3—C25—H25A109.00
C16—C17—C18118.9 (2)C3—C25—H25B109.00
C13—C18—C17120.5 (2)C3—C25—H25C110.00
C11—C19—C20120.03 (16)H25A—C25—H25B109.00
C11—C19—C24121.02 (17)H25A—C25—H25C109.00
C20—C19—C24118.94 (17)H25B—C25—H25C109.00
C19—C20—C21120.07 (18)
C1—O2—N1—C12−9.41 (18)C5—C6—C7—C80.8 (4)
N1—O2—C1—C2142.07 (14)C6—C7—C8—C90.2 (4)
N1—O2—C1—C10−100.27 (15)C7—C8—C9—C4−1.6 (3)
N1—O2—C1—C1115.89 (17)C7—C8—C9—C10176.8 (2)
O2—N1—C12—C11−1.6 (2)C4—C9—C10—O1172.0 (2)
O2—N1—C12—C13−177.30 (15)C4—C9—C10—C1−9.7 (3)
O3—N2—C16—C15−10.8 (3)C8—C9—C10—O1−6.3 (3)
O3—N2—C16—C17169.9 (2)C8—C9—C10—C1172.01 (18)
O4—N2—C16—C15168.4 (2)C1—C11—C12—N111.1 (2)
O4—N2—C16—C17−10.9 (3)C1—C11—C12—C13−173.53 (16)
O2—C1—C2—C356.9 (2)C19—C11—C12—N1−113.37 (18)
C10—C1—C2—C3−55.0 (2)C19—C11—C12—C1362.0 (2)
C11—C1—C2—C3174.42 (17)C1—C11—C19—C20106.3 (2)
O2—C1—C10—O197.8 (2)C1—C11—C19—C24−74.7 (2)
O2—C1—C10—C9−80.60 (19)C12—C11—C19—C20−139.91 (19)
C2—C1—C10—O1−147.73 (19)C12—C11—C19—C2439.1 (3)
C2—C1—C10—C933.9 (2)N1—C12—C13—C14−177.13 (18)
C11—C1—C10—O1−13.5 (3)N1—C12—C13—C183.5 (3)
C11—C1—C10—C9168.10 (16)C11—C12—C13—C147.7 (3)
O2—C1—C11—C12−15.17 (16)C11—C12—C13—C18−171.68 (18)
O2—C1—C11—C19105.44 (17)C12—C13—C14—C15−177.04 (18)
C2—C1—C11—C12−134.05 (17)C18—C13—C14—C152.3 (3)
C2—C1—C11—C19−13.4 (3)C12—C13—C18—C17177.39 (19)
C10—C1—C11—C1295.16 (17)C14—C13—C18—C17−2.0 (3)
C10—C1—C11—C19−144.23 (17)C13—C14—C15—C16−0.3 (3)
C1—C2—C3—C451.4 (2)C14—C15—C16—N2178.49 (19)
C1—C2—C3—C25180.0 (2)C14—C15—C16—C17−2.2 (3)
C2—C3—C4—C5155.9 (2)N2—C16—C17—C18−178.2 (2)
C2—C3—C4—C9−26.9 (3)C15—C16—C17—C182.6 (3)
C25—C3—C4—C529.1 (3)C16—C17—C18—C13−0.4 (3)
C25—C3—C4—C9−153.6 (2)C11—C19—C20—C21179.13 (19)
C3—C4—C5—C6176.3 (2)C24—C19—C20—C210.1 (3)
C9—C4—C5—C6−1.1 (3)C11—C19—C24—C23−179.6 (2)
C3—C4—C9—C8−175.4 (2)C20—C19—C24—C23−0.6 (3)
C3—C4—C9—C106.3 (3)C19—C20—C21—C220.3 (3)
C5—C4—C9—C82.0 (3)C20—C21—C22—C23−0.3 (3)
C5—C4—C9—C10−176.32 (19)C21—C22—C23—C24−0.3 (3)
C4—C5—C6—C7−0.3 (4)C22—C23—C24—C190.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2B···O4i0.992.503.319 (3)140
C20—H20···O1ii0.952.583.365 (2)140

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2153).

References

  • Anaflous, A., Benchat1, N., Mimouni, Abouricha, M. S., Ben-Hadda, T., El-Bali, B., hakkou, A. & Hacht, B. (2004). Lett. Drug. Des. Disc.1, 35–44.
  • Arnold, T., Bruckley, J. S. & Richter, J. (1947). J. Am. Chem. Soc.69, 2323–2325.
  • Bakavoli, M., Bagherzadeh, G. & Rahimizadeh, M. (2005). Mendeleev Commun.4, 145–146.
  • Chaouni-Benabdallah, A., Galtier, C., Allouchi, H., Kherbeche, A., Debouzy, J. C., Teulade, J. C., Chavignon, O., Witvrouw, M., Pannecouque, C., Balzarini, J., De Clercq, E. & Enguehard, C. (2001). Arch. Pharm. (Weinheim), 334, 224–228. [PubMed]
  • Chenera, B., West, M. L., Finkelstein, J. A. & Dreyer, G. B. J. (1993). J. Org. Chem.58, 5605–5606.
  • Debaerdemaeker, T., Pohl, H. H. & Dimroth, K. (1977). Chem. Ber. Recl, 110, 1497–1503.
  • Ellis, G. P. (1997). Chromenes, Chromanones and Chromones New York: John Wiley and Sons, Inc.
  • Howe, R. K. & Shelton, B. R. (1990). J. Org. Chem.55, 4603–4607.
  • Katritzky, A. R., Xu, Y. J. & Tu, H. B. (2003). J. Org. Chem.68, 4935–4937. [PubMed]
  • Kerbal, A., Tshiamala, K., Cerutti, E., Laude, B. & Vebrel, J. (1990). Bull. Soc. Chim. Fr.127, 252–257.
  • Kooijman, H., Spek, A. L., Kleijn, H., van Maanen, H. L., Jastrzebski, J. T. B. H. & van Kozikowski, A. P. (1984). Acc. Chem. Res.17, 410–416.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Seifert, W. J., Schaffer, O. & Dimroth, K. (1976). Angew. Chem. Int. Ed. Engl.15, 238–239.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Smietana, M., Gouverneur, V. & Mioskowski, C. (1999). Tetrahedron Lett.40, 1291–1294.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (2005). X-AREA (Version 1.25) and X-RED32 (Version 1.26). Stoe & Cie GmbH, Darmstadt, Germany.
  • Subbiah Pandi, A., Banumathi, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K. & Manikandan, S. (2001). Acta Cryst. C57, 819–820. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography