PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m294.
Published online 2008 January 4. doi:  10.1107/S1600536807067967
PMCID: PMC2960304

Aqua­(3-formyl-2-oxidobenzoato-κ2 O 1,O 2)(1,10-phenanthroline-κ2 N,N′)copper(II) methanol solvate

Abstract

In the structure of the title complex, [Cu(C8H4O4)(C12H8N2)(H2O)]·CH4O, the CuII ion is penta­coordinated in a tetra­gonal–pyramidal geometry, with two O atoms of the 3-formyl-2-oxidobenzoate (3-formyl­salicylate) anion and two N atoms of 1,10-phenanthroline occupying the basal plane, and a water O atom located at the apical site. The structure displays O—H(...)O hydrogen bonding.

Related literature

For related literature, see: Erxleben & Schumacher (2001 [triangle]); Ma et al. (2007 [triangle]); Akitsu & Einaga (2006 [triangle]); Yu, Cui et al. (2007 [triangle]); Yu, Hao et al. (2006 [triangle]); Costes et al. (2004 [triangle]); Karmakar et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m294-scheme1.jpg

Experimental

Crystal data

  • [Cu(C8H4O4)(C12H8N2)(H2O)]·CH4O
  • M r = 457.91
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m294-efi1.jpg
  • a = 8.6714 (11) Å
  • b = 10.3895 (13) Å
  • c = 11.7617 (14) Å
  • α = 115.125 (2)°
  • β = 95.859 (2)°
  • γ = 93.589 (2)°
  • V = 947.7 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.20 mm−1
  • T = 296 (2) K
  • 0.21 × 0.16 × 0.15 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: none
  • 4953 measured reflections
  • 3336 independent reflections
  • 2336 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.100
  • S = 0.94
  • 3336 reflections
  • 273 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2005 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067967/kj2080sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067967/kj2080Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the Henan Administration of Science and Technology (grant No. 0111030700).

supplementary crystallographic information

Comment

The Schiff bases of 3-formylsalicylic acid with diamines have been studied for many years and their binuclear complexes have been intensively investigated in view of the interesting magnetic interaction between the bridged metals (Akitsu & Einaga, 2006; Karmakar et al., 2005; Costes et al., 2004). Recently some complexes with the schiff base of 3-formysalicylic acid and monoamines (Yu, Hao et al., 2006; Yu, Cui et al., 2007; Erxleben & Schumacher, 2001; Ma et al., 2007) have also been reported. But to our knowledge, complexes using 3-formylsalicylic acid directly as ligand have received much less attention. Here we synthesized a multicomponent complex, containing 3-formylsalicylic acid and 1,10-phenanthroline.

The CuII ion is coordinated in distorted square pyramid, where the basal plane is formed by NNOO atoms coming from 1,10-phenanthroline and 3-formylsalcylate anion; the apical site is occupied by the O atom of water. The 3-formylsalicylate anion acts as a bidentate ligand. The O atom of the formyl group is not coordinated.

There are three kinds of intermolecular hydrogen bonds in the crystal. One is between the H atom of water and the O atom of methanol, the second is between the H atom of water and the formyl O atom, the third is between the H atom of methanol and the uncoordinated O atom of the carboxylate group. The intermolecular hydrogen bonds link the molecules into a onedimensional chain, running in the [1 - 1 0] direction (Figure 2).

Experimental

3-formylsalicylic acid (0.166 g, 1.0 mmol) was dissolved in 10 ml NaOH (0.080 g, 2.0 mmol) aqueous solution. To this solution, 15 ml me thanol solution containing 1,10-phenanthroline (0.1982 g, 1 mmol) and CuCl2.2H2O (0.1705 g, 1 mmol) was added. The mixture was stirred at ambient temperature for 2 h, then filtered to give a green solution. The filtrate was airproofed and kept at room temperature. Two weeks later, green block-shaped crystal of X-ray quality were obtained.

Refinement

The approximate positions of the water H atoms, obtained from a difference Fourier map, were restrained to ideal water geometry and fixed in the final stages of refinement. All other H atoms were included in calculated positions, with C—H distances ranging from 0.93 to 0.96 Å and O—H distances of 0.82 Å. They were refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The molecular packing of the title compound. Hydrogen bonds are indicated by dashed lines.

Crystal data

[Cu(C8H4O4)(C12H8N2)(H2O)]·CH4OZ = 2
Mr = 457.91F000 = 470
Triclinic, P1Dx = 1.605 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.6714 (11) ÅCell parameters from 1476 reflections
b = 10.3895 (13) Åθ = 2.4–23.1º
c = 11.7617 (14) ŵ = 1.20 mm1
α = 115.125 (2)ºT = 296 (2) K
β = 95.859 (2)ºBlock, green
γ = 93.589 (2)º0.21 × 0.16 × 0.15 mm
V = 947.7 (2) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer2336 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Monochromator: graphiteθmax = 25.0º
T = 296(2) Kθmin = 1.9º
[var phi] and ω scansh = −10→8
Absorption correction: nonek = −11→12
4953 measured reflectionsl = −13→11
3336 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.100  w = 1/[σ2(Fo2) + (0.0357P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
3336 reflectionsΔρmax = 0.56 e Å3
273 parametersΔρmin = −0.40 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.04891 (5)0.15042 (5)0.43931 (4)0.04238 (18)
O1W0.2655 (3)0.2918 (3)0.4306 (3)0.0690 (8)
H1WA0.33700.23820.40540.083*
H1WB0.24520.32750.37850.083*
N1−0.1078 (3)0.2009 (3)0.3305 (3)0.0395 (7)
N20.0517 (3)−0.0202 (3)0.2729 (3)0.0366 (7)
O10.0334 (3)0.4719 (2)0.7766 (2)0.0541 (7)
O2−0.0072 (3)0.3010 (3)0.5848 (2)0.0518 (7)
O30.1798 (3)0.0801 (2)0.5341 (2)0.0433 (6)
O40.5232 (3)−0.0845 (3)0.6619 (3)0.0694 (9)
C10.2080 (4)0.2978 (3)0.7301 (3)0.0344 (8)
C20.2507 (4)0.1602 (3)0.6484 (3)0.0347 (8)
C30.3754 (4)0.1093 (4)0.6985 (3)0.0364 (8)
C40.4531 (4)0.1902 (4)0.8211 (4)0.0455 (9)
H4A0.53490.15450.85170.055*
C50.4121 (5)0.3205 (4)0.8972 (4)0.0517 (10)
H5A0.46490.37380.97880.062*
C60.2905 (4)0.3714 (4)0.8503 (3)0.0433 (9)
H6A0.26240.46010.90250.052*
C70.0722 (4)0.3618 (4)0.6951 (3)0.0377 (8)
C80.4236 (4)−0.0293 (4)0.6237 (4)0.0480 (10)
H8A0.3748−0.07980.54040.058*
C9−0.1828 (4)0.3141 (4)0.3596 (4)0.0511 (10)
H9A−0.15960.38760.44130.061*
C10−0.2942 (5)0.3298 (4)0.2752 (4)0.0560 (11)
H10A−0.34510.41160.30050.067*
C11−0.3287 (5)0.2251 (4)0.1550 (4)0.0554 (11)
H11A−0.40430.23470.09790.066*
C12−0.2512 (4)0.1027 (4)0.1166 (3)0.0429 (9)
C13−0.2754 (5)−0.0140 (4)−0.0074 (4)0.0534 (11)
H13A−0.3494−0.0119−0.06950.064*
C14−0.1935 (5)−0.1267 (4)−0.0360 (4)0.0546 (11)
H14A−0.2120−0.2007−0.11770.066*
C15−0.0787 (4)−0.1356 (4)0.0558 (3)0.0421 (9)
C160.0130 (5)−0.2480 (4)0.0336 (3)0.0505 (10)
H16A0.0007−0.3254−0.04610.061*
C170.1192 (5)−0.2437 (4)0.1277 (4)0.0493 (10)
H17A0.1810−0.31780.11260.059*
C180.1366 (4)−0.1285 (4)0.2479 (3)0.0429 (9)
H18A0.2095−0.12760.31200.051*
C19−0.0538 (4)−0.0235 (4)0.1789 (3)0.0362 (8)
C20−0.1402 (4)0.0960 (4)0.2081 (3)0.0373 (8)
C210.6449 (6)0.4308 (6)0.6735 (6)0.108 (2)
H21A0.60250.44680.75010.162*
H21B0.68870.34160.64340.162*
H21C0.56350.42750.61030.162*
O50.7606 (4)0.5414 (3)0.6979 (3)0.0751 (9)
H50.84590.51830.71380.113*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0434 (3)0.0424 (3)0.0300 (3)0.0188 (2)0.00278 (19)0.0037 (2)
O1W0.0605 (19)0.0671 (19)0.092 (2)0.0250 (16)0.0175 (17)0.0422 (18)
N10.0402 (18)0.0358 (17)0.0363 (17)0.0096 (15)0.0087 (14)0.0085 (14)
N20.0324 (17)0.0363 (17)0.0342 (17)0.0068 (14)0.0089 (14)0.0074 (14)
O10.0666 (19)0.0384 (15)0.0413 (15)0.0236 (14)0.0049 (14)0.0001 (13)
O20.0540 (17)0.0520 (16)0.0321 (14)0.0283 (14)0.0016 (12)0.0000 (12)
O30.0487 (16)0.0346 (13)0.0327 (14)0.0154 (12)−0.0007 (12)0.0014 (11)
O40.0579 (19)0.0649 (19)0.092 (2)0.0275 (16)0.0107 (17)0.0382 (18)
C10.036 (2)0.0324 (19)0.0313 (19)0.0047 (16)0.0042 (16)0.0100 (16)
C20.034 (2)0.036 (2)0.034 (2)0.0034 (17)0.0070 (16)0.0144 (17)
C30.032 (2)0.037 (2)0.042 (2)0.0041 (17)0.0067 (17)0.0188 (18)
C40.036 (2)0.051 (2)0.055 (3)0.0044 (19)0.0007 (19)0.030 (2)
C50.054 (3)0.049 (2)0.042 (2)−0.003 (2)−0.012 (2)0.015 (2)
C60.050 (2)0.033 (2)0.037 (2)0.0011 (18)0.0020 (18)0.0064 (17)
C70.041 (2)0.034 (2)0.032 (2)0.0050 (17)0.0070 (17)0.0079 (17)
C80.041 (2)0.049 (2)0.057 (3)0.011 (2)0.012 (2)0.024 (2)
C90.049 (2)0.046 (2)0.055 (3)0.014 (2)0.009 (2)0.018 (2)
C100.050 (3)0.054 (3)0.068 (3)0.019 (2)0.008 (2)0.029 (2)
C110.051 (3)0.064 (3)0.060 (3)0.006 (2)−0.003 (2)0.038 (3)
C120.039 (2)0.050 (2)0.042 (2)−0.0015 (19)0.0021 (18)0.025 (2)
C130.057 (3)0.062 (3)0.041 (2)−0.011 (2)−0.009 (2)0.029 (2)
C140.066 (3)0.053 (3)0.033 (2)−0.012 (2)−0.001 (2)0.010 (2)
C150.044 (2)0.042 (2)0.033 (2)−0.0061 (19)0.0078 (18)0.0098 (17)
C160.058 (3)0.042 (2)0.034 (2)−0.003 (2)0.016 (2)−0.0004 (19)
C170.054 (3)0.036 (2)0.048 (2)0.0128 (19)0.022 (2)0.0048 (19)
C180.037 (2)0.043 (2)0.044 (2)0.0078 (18)0.0091 (18)0.0141 (18)
C190.037 (2)0.038 (2)0.0274 (19)−0.0022 (17)0.0053 (16)0.0089 (16)
C200.035 (2)0.043 (2)0.032 (2)−0.0003 (18)0.0048 (17)0.0157 (18)
C210.068 (4)0.116 (5)0.173 (6)0.040 (4)0.040 (4)0.085 (5)
O50.078 (2)0.0586 (19)0.085 (2)0.0297 (18)0.001 (2)0.0276 (18)

Geometric parameters (Å, °)

Cu1—O1W2.348 (3)C8—H8A0.9300
Cu1—O21.898 (2)C9—C101.381 (5)
Cu1—O31.898 (2)C9—H9A0.9300
Cu1—N12.016 (3)C10—C111.356 (5)
Cu1—N22.011 (3)C10—H10A0.9300
O1W—H1WA0.8500C11—C121.399 (5)
O1W—H1WB0.8499C11—H11A0.9300
N1—C91.312 (4)C12—C201.396 (5)
N1—C201.373 (4)C12—C131.430 (5)
N2—C181.327 (4)C13—C141.344 (5)
N2—C191.348 (4)C13—H13A0.9300
O1—C71.234 (4)C14—C151.430 (5)
O2—C71.273 (4)C14—H14A0.9300
O3—C21.301 (4)C15—C161.401 (5)
O4—C81.216 (4)C15—C191.403 (4)
C1—C61.380 (5)C16—C171.350 (5)
C1—C21.441 (4)C16—H16A0.9300
C1—C71.494 (5)C17—C181.397 (5)
C2—C31.415 (5)C17—H17A0.9300
C3—C41.394 (5)C18—H18A0.9300
C3—C81.448 (5)C19—C201.424 (5)
C4—C51.363 (5)C21—O51.388 (5)
C4—H4A0.9300C21—H21A0.9600
C5—C61.375 (5)C21—H21B0.9600
C5—H5A0.9300C21—H21C0.9600
C6—H6A0.9300O5—H50.8200
O1W—Cu1—O293.40 (11)C3—C8—H8A117.6
O1W—Cu1—O390.04 (10)N1—C9—C10123.4 (4)
O1W—Cu1—N196.50 (11)N1—C9—H9A118.3
O1W—Cu1—N297.69 (10)C10—C9—H9A118.3
O2—Cu1—O394.32 (10)C11—C10—C9119.5 (4)
O2—Cu1—N188.77 (11)C11—C10—H10A120.2
O2—Cu1—N2166.01 (11)C9—C10—H10A120.2
O3—Cu1—N1172.59 (11)C10—C11—C12120.2 (4)
O3—Cu1—N294.17 (11)C10—C11—H11A119.9
N1—Cu1—N281.55 (11)C12—C11—H11A119.9
Cu1—O1W—H1WA107.8C20—C12—C11116.4 (4)
Cu1—O1W—H1WB112.5C20—C12—C13118.0 (4)
H1WA—O1W—H1WB107.7C11—C12—C13125.6 (4)
C9—N1—C20117.2 (3)C14—C13—C12121.4 (4)
C9—N1—Cu1130.2 (3)C14—C13—H13A119.3
C20—N1—Cu1112.5 (2)C12—C13—H13A119.3
C18—N2—C19118.4 (3)C13—C14—C15121.6 (4)
C18—N2—Cu1128.5 (3)C13—C14—H14A119.2
C19—N2—Cu1113.0 (2)C15—C14—H14A119.2
C7—O2—Cu1126.8 (2)C16—C15—C19116.4 (4)
C2—O3—Cu1123.3 (2)C16—C15—C14125.3 (4)
C6—C1—C2118.7 (3)C19—C15—C14118.3 (4)
C6—C1—C7117.6 (3)C17—C16—C15120.0 (3)
C2—C1—C7123.6 (3)C17—C16—H16A120.0
O3—C2—C3118.8 (3)C15—C16—H16A120.0
O3—C2—C1124.2 (3)C16—C17—C18120.2 (4)
C3—C2—C1117.0 (3)C16—C17—H17A119.9
C4—C3—C2120.9 (3)C18—C17—H17A119.9
C4—C3—C8118.5 (3)N2—C18—C17121.7 (4)
C2—C3—C8120.6 (3)N2—C18—H18A119.2
C5—C4—C3121.6 (3)C17—C18—H18A119.2
C5—C4—H4A119.2N2—C19—C15123.5 (3)
C3—C4—H4A119.2N2—C19—C20116.9 (3)
C4—C5—C6118.3 (4)C15—C19—C20119.6 (3)
C4—C5—H5A120.8N1—C20—C12123.3 (3)
C6—C5—H5A120.8N1—C20—C19115.7 (3)
C5—C6—C1123.6 (3)C12—C20—C19121.0 (3)
C5—C6—H6A118.2O5—C21—H21A109.5
C1—C6—H6A118.2O5—C21—H21B109.5
O1—C7—O2120.1 (3)H21A—C21—H21B109.5
O1—C7—C1118.9 (3)O5—C21—H21C109.5
O2—C7—C1120.9 (3)H21A—C21—H21C109.5
O4—C8—C3124.8 (4)H21B—C21—H21C109.5
O4—C8—H8A117.6C21—O5—H5109.5
O2—Cu1—N1—C912.7 (3)C6—C1—C7—O2178.7 (3)
N2—Cu1—N1—C9−177.4 (3)C2—C1—C7—O2−5.4 (5)
O1W—Cu1—N1—C9−80.5 (3)C4—C3—C8—O43.6 (5)
O2—Cu1—N1—C20−165.8 (2)C2—C3—C8—O4−175.6 (3)
N2—Cu1—N1—C204.1 (2)C20—N1—C9—C102.1 (5)
O1W—Cu1—N1—C20100.9 (2)Cu1—N1—C9—C10−176.3 (3)
O2—Cu1—N2—C18−134.6 (4)N1—C9—C10—C11−0.8 (6)
O3—Cu1—N2—C18−7.3 (3)C9—C10—C11—C12−0.5 (6)
N1—Cu1—N2—C18178.7 (3)C10—C11—C12—C200.4 (5)
O1W—Cu1—N2—C1883.3 (3)C10—C11—C12—C13−179.2 (4)
O2—Cu1—N2—C1942.0 (6)C20—C12—C13—C14−0.5 (5)
O3—Cu1—N2—C19169.2 (2)C11—C12—C13—C14179.1 (4)
N1—Cu1—N2—C19−4.7 (2)C12—C13—C14—C150.2 (6)
O1W—Cu1—N2—C19−100.2 (2)C13—C14—C15—C16−179.2 (3)
O3—Cu1—O2—C725.9 (3)C13—C14—C15—C190.7 (5)
N2—Cu1—O2—C7153.2 (4)C19—C15—C16—C17−0.6 (5)
N1—Cu1—O2—C7−160.8 (3)C14—C15—C16—C17179.3 (3)
O1W—Cu1—O2—C7−64.4 (3)C15—C16—C17—C180.8 (6)
O2—Cu1—O3—C2−27.2 (3)C19—N2—C18—C170.2 (5)
N2—Cu1—O3—C2163.9 (3)Cu1—N2—C18—C17176.6 (2)
O1W—Cu1—O3—C266.2 (3)C16—C17—C18—N2−0.7 (5)
Cu1—O3—C2—C3−163.8 (2)C18—N2—C19—C150.0 (5)
Cu1—O3—C2—C117.9 (4)Cu1—N2—C19—C15−176.9 (2)
C6—C1—C2—O3178.8 (3)C18—N2—C19—C20−178.5 (3)
C7—C1—C2—O32.8 (5)Cu1—N2—C19—C204.6 (4)
C6—C1—C2—C30.4 (5)C16—C15—C19—N20.2 (5)
C7—C1—C2—C3−175.5 (3)C14—C15—C19—N2−179.7 (3)
O3—C2—C3—C4−178.9 (3)C16—C15—C19—C20178.6 (3)
C1—C2—C3—C4−0.5 (5)C14—C15—C19—C20−1.2 (5)
O3—C2—C3—C80.3 (5)C9—N1—C20—C12−2.3 (5)
C1—C2—C3—C8178.7 (3)Cu1—N1—C20—C12176.5 (3)
C2—C3—C4—C50.2 (5)C9—N1—C20—C19178.4 (3)
C8—C3—C4—C5−179.0 (3)Cu1—N1—C20—C19−2.9 (4)
C3—C4—C5—C60.2 (5)C11—C12—C20—N11.1 (5)
C4—C5—C6—C1−0.3 (6)C13—C12—C20—N1−179.4 (3)
C2—C1—C6—C5−0.1 (5)C11—C12—C20—C19−179.7 (3)
C7—C1—C6—C5176.1 (3)C13—C12—C20—C19−0.1 (5)
Cu1—O2—C7—O1169.4 (2)N2—C19—C20—N1−1.1 (4)
Cu1—O2—C7—C1−13.8 (5)C15—C19—C20—N1−179.7 (3)
C6—C1—C7—O1−4.5 (5)N2—C19—C20—C12179.5 (3)
C2—C1—C7—O1171.4 (3)C15—C19—C20—C120.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5···O1i0.821.892.703 (4)171
O1W—H1WB···O5ii0.851.932.747 (4)162
O1W—H1WA···O4iii0.852.002.844 (4)170

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2080).

References

  • Akitsu, T. & Einaga, Y. (2006). Inorg. Chem.45, 9826–9833. [PubMed]
  • Bruker (2005). APEX2, SAINT and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Costes, J.-P., Dahan, F., Donnadieu, B., Rodriquez Douton, M.-J., Fernandez Garcia, M. I., Bousseksou, A. & Tuchagues, J.-P. (2004). Inorg. Chem.43, 2736–2744. [PubMed]
  • Erxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. pp. 3039–3046.
  • Karmakar, T. K., Ghosh, B. K., Usman, A., Fun, H.-K., Rivière, E., Mallah, T., Aromí, G. & Chandra, S. K. (2005). Inorg. Chem.44, 2391–2399. [PubMed]
  • Ma, S. L., Sun, X. X., Gao, S., Qi, C. M., Huang, H. B. & Zhu, W. X. (2007). Eur. J. Inorg. Chem.6, 846–851.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Yu, Z.-W., Cui, Q.-X., Zhang, W. & Hao, Y.-L. (2007). Acta Cryst. E63, m1563–m1565.
  • Yu, Z.-W., Hao, Y.-L., Zhang, W. & Cui, Q.-X. (2006). Acta Cryst. E62, m2786–m2788.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography