PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o360.
Published online 2008 January 4. doi:  10.1107/S1600536807067499
PMCID: PMC2960299

N-(Biphenyl-4-ylcarbon­yl)-N′-(2-pyridylmeth­yl)thio­urea

Abstract

In the title compound, C20H17N3OS, the dihedral angle between the benzene rings of the biphenyl fragment is 36.84 (9)°. The transcis geometry of the thio­urea unit is stabilized by intra­molecular N—H(...)O and N—H(...)N hydrogen bonds between the H atom of the cis thio­amide and the carbonyl O and pyridine N atoms, respectively. In the crystal structure, inter­molecular N—H(...)S hydrogen bonds form centrosymmetric dimers extending along the b axis.

Related literature

For the crystal structure of the biphenyl-4-carbonyl­thio­urea analogue, see: Arif & Yamin (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o360-scheme1.jpg

Experimental

Crystal data

  • C20H17N3OS
  • M r = 347.43
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o360-efi1.jpg
  • a = 7.467 (2) Å
  • b = 9.364 (2) Å
  • c = 13.184 (3) Å
  • α = 101.529 (5)°
  • β = 99.113 (4)°
  • γ = 101.543 (5)°
  • V = 865.9 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 273 (2) K
  • 0.45 × 0.37 × 0.18 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.915, T max = 0.965
  • 8243 measured reflections
  • 3036 independent reflections
  • 2561 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.101
  • S = 1.05
  • 3036 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997b [triangle]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067499/at2519sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067499/at2519Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Ministry of Higher Education of Malaysia for the Fundamental Research Grant UKM-ST-01-FRGS-0003–2006 and Universiti Kebangsaan Malaysian for the research facilities.

supplementary crystallographic information

Comment

The title compound, (I), analogous to N-(biphenyl-4-carbonyl)-N'- (2-chlorophenyl)thiourea (II) (Arif & Yamin, 2007) except the 2-chlorobenzene group is replaced by the 2-methyl-pyridine group (Fig.1). The molecule maintains its trans-cis configuration with respect to the position of the biphenyl-4-carbonyl and 2-methyl-pyridin groups relative the thiono sulfur atom across the C14—N1 and C14—N2 bonds, respectively. Other bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those in (II). However, the dihedral angle between the benzene rings of the biphenyl fragment, (C1—C6) and (C7—C12) of 36,84 (9)° is larger than that (20.71 (17)°) in (II). Both the central C13/O1/N1/C14/S1/N2/C15 fragment and pyridine ring (N3/C16—C20), are planar with a maximum deviation of 0.032 (2)Å for atom N1 atom from the least square plane of the central fragment. The central fragment makes dihedral angles with the (C7—C12) benzene and (N3/C16—C20) pyridine rings of 16.39 (8) and 13.21 (6)°, respectively. The trans-cis geometry of the thiourea moiety is stabilized by the relatively strong N2—H2···O1 and a weak N2—H2···N3 intramolecular hydrogen bonds (Table 2). In the crystal structure, the molecules are linked by N1—H1···S1 intermolecular hydrogen bonds to form centrosymmetric dimers and are arranged parallel to b axis (Fig.2). In (II), the molecule is stabilized by van der Waal and π-π interactions.

Experimental

The mixrure of biphenyl 1–4 carbonyl chloride (5.417 g, 0.025 mol), with the equimolar amount of ammonium thiocyanate (1.903 g, 0.025 mol) and 2-picolylamine (2.704 g, 0.025 mol) in 30 ml dry acetone was refluxed with stirring for 4 h. The solution was filtered and left to evaporate at room temperature. The black precipitate obtained after a few days, was washed with water and cold ethanol (80%; m.p 416.4–419.2 K). Suitable crystals for X-ray investigation were obtained byrecrystallization from mixture of dichloromethane and n-Hexane (1:3 v/v).

Refinement

H atoms on both the C and N atoms were positioned geometrically with C—H = 0.93 - 0.97Å and N—H = 0.86Å and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(parent atom).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsods are drawn at the 50% probability level.
Fig. 2.
A packing diagram of (I) viewed down the a axis. Hydrogen bonds are shown by dashed lines.

Crystal data

C20H17N3OSZ = 2
Mr = 347.43F000 = 364
Triclinic, P1Dx = 1.333 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.467 (2) ÅCell parameters from 3740 reflections
b = 9.364 (2) Åθ = 1.6–25.0º
c = 13.184 (3) ŵ = 0.20 mm1
α = 101.529 (5)ºT = 273 (2) K
β = 99.113 (4)ºBlock, colourless
γ = 101.543 (5)º0.45 × 0.37 × 0.18 mm
V = 865.9 (4) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer3036 independent reflections
Radiation source: fine-focus sealed tube2561 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.019
Detector resolution: 83.66 pixels mm-1θmax = 25.0º
T = 273(2) Kθmin = 1.6º
ω scansh = −8→8
Absorption correction: multi-scan(SADABS; Bruker, 2000)k = −11→11
Tmin = 0.915, Tmax = 0.965l = −15→15
8243 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101  w = 1/[σ2(Fo2) + (0.0535P)2 + 0.1413P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3036 reflectionsΔρmax = 0.20 e Å3
226 parametersΔρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.04886 (8)0.78345 (5)1.01142 (3)0.06855 (19)
O10.0915 (2)0.84641 (13)0.68251 (9)0.0672 (4)
N10.1098 (2)0.91996 (14)0.85943 (10)0.0523 (4)
H10.13300.99850.91060.063*
N20.00553 (19)0.66245 (13)0.80744 (10)0.0481 (3)
H20.01450.67230.74480.058*
N3−0.09400 (19)0.44728 (14)0.63072 (10)0.0488 (3)
C10.3283 (3)1.20743 (18)0.85384 (13)0.0578 (4)
H1A0.35031.17860.91730.069*
C20.4042 (3)1.35237 (19)0.84981 (13)0.0570 (4)
H2A0.47741.41980.91090.068*
C30.3741 (2)1.40021 (17)0.75677 (12)0.0477 (4)
C40.2679 (2)1.29480 (18)0.66663 (13)0.0500 (4)
H40.24731.32310.60290.060*
C50.1927 (2)1.14970 (18)0.66996 (12)0.0497 (4)
H50.12321.08110.60840.060*
C60.2193 (2)1.10431 (17)0.76401 (12)0.0476 (4)
C70.4562 (2)1.55747 (18)0.75548 (13)0.0515 (4)
C80.4688 (3)1.6749 (2)0.84207 (15)0.0643 (5)
H80.41991.65500.89980.077*
C90.5536 (3)1.8209 (2)0.84273 (18)0.0762 (6)
H90.56161.89860.90090.091*
C100.6255 (3)1.8512 (2)0.7583 (2)0.0830 (7)
H100.68421.94910.75950.100*
C110.6113 (3)1.7377 (2)0.67184 (19)0.0781 (6)
H110.65911.75910.61410.094*
C120.5262 (2)1.5910 (2)0.66975 (15)0.0607 (5)
H120.51621.51470.61040.073*
C130.1346 (2)0.94586 (17)0.76308 (12)0.0500 (4)
C140.0520 (2)0.78342 (16)0.88501 (12)0.0471 (4)
C15−0.0600 (3)0.51329 (16)0.82179 (12)0.0506 (4)
H15A−0.15820.51290.86190.061*
H15B0.04180.48410.86150.061*
C16−0.1336 (2)0.40249 (16)0.71635 (12)0.0433 (3)
C17−0.1583 (2)0.34846 (18)0.53719 (13)0.0531 (4)
H17−0.13120.37840.47710.064*
C18−0.2621 (2)0.20551 (18)0.52501 (13)0.0556 (4)
H18−0.30420.14030.45840.067*
C19−0.3025 (2)0.16096 (18)0.61372 (14)0.0571 (4)
H19−0.37310.06480.60800.069*
C20−0.2370 (2)0.26031 (17)0.71097 (13)0.0504 (4)
H20−0.26190.23220.77210.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.1197 (5)0.0465 (3)0.0393 (3)0.0166 (3)0.0220 (2)0.00870 (19)
O10.1052 (10)0.0460 (7)0.0428 (6)0.0006 (6)0.0275 (6)0.0016 (5)
N10.0788 (9)0.0363 (7)0.0391 (7)0.0075 (6)0.0201 (6)0.0027 (5)
N20.0685 (9)0.0363 (7)0.0378 (7)0.0080 (6)0.0155 (6)0.0060 (5)
N30.0621 (8)0.0403 (7)0.0430 (7)0.0081 (6)0.0142 (6)0.0092 (6)
C10.0791 (12)0.0500 (9)0.0405 (9)0.0038 (8)0.0147 (8)0.0118 (7)
C20.0716 (11)0.0478 (9)0.0434 (9)0.0012 (8)0.0108 (8)0.0064 (7)
C30.0480 (9)0.0461 (8)0.0515 (9)0.0119 (7)0.0155 (7)0.0127 (7)
C40.0560 (9)0.0520 (9)0.0452 (9)0.0150 (8)0.0118 (7)0.0157 (7)
C50.0560 (9)0.0473 (9)0.0431 (9)0.0114 (7)0.0100 (7)0.0055 (7)
C60.0575 (9)0.0431 (8)0.0427 (8)0.0099 (7)0.0183 (7)0.0071 (7)
C70.0473 (9)0.0477 (9)0.0595 (10)0.0104 (7)0.0059 (7)0.0178 (8)
C80.0716 (12)0.0499 (10)0.0671 (12)0.0104 (9)0.0075 (9)0.0141 (9)
C90.0860 (14)0.0482 (10)0.0823 (15)0.0106 (10)−0.0078 (11)0.0131 (10)
C100.0821 (14)0.0581 (12)0.0998 (17)−0.0004 (10)−0.0113 (12)0.0394 (13)
C110.0773 (14)0.0774 (14)0.0834 (15)0.0063 (11)0.0097 (11)0.0457 (13)
C120.0610 (10)0.0598 (11)0.0637 (11)0.0116 (8)0.0097 (9)0.0257 (9)
C130.0611 (10)0.0440 (9)0.0441 (9)0.0086 (7)0.0191 (7)0.0065 (7)
C140.0577 (9)0.0391 (8)0.0437 (9)0.0104 (7)0.0149 (7)0.0063 (7)
C150.0687 (10)0.0393 (8)0.0433 (9)0.0096 (7)0.0140 (8)0.0102 (7)
C160.0508 (9)0.0384 (8)0.0426 (8)0.0134 (7)0.0130 (7)0.0088 (6)
C170.0648 (10)0.0510 (9)0.0412 (9)0.0090 (8)0.0139 (7)0.0084 (7)
C180.0629 (10)0.0487 (9)0.0456 (9)0.0049 (8)0.0073 (8)0.0008 (7)
C190.0626 (10)0.0407 (8)0.0597 (10)−0.0011 (8)0.0114 (8)0.0078 (8)
C200.0604 (10)0.0442 (9)0.0476 (9)0.0089 (7)0.0161 (7)0.0133 (7)

Geometric parameters (Å, °)

S1—C141.6703 (16)C7—C121.383 (2)
O1—C131.2147 (18)C7—C81.394 (2)
N1—C131.3735 (19)C8—C91.385 (3)
N1—C141.390 (2)C8—H80.9300
N1—H10.8600C9—C101.365 (3)
N2—C141.3102 (19)C9—H90.9300
N2—C151.4449 (19)C10—C111.368 (3)
N2—H20.8600C10—H100.9300
N3—C161.3351 (19)C11—C121.386 (3)
N3—C171.336 (2)C11—H110.9300
C1—C21.377 (2)C12—H120.9300
C1—C61.386 (2)C15—C161.505 (2)
C1—H1A0.9300C15—H15A0.9700
C2—C31.389 (2)C15—H15B0.9700
C2—H2A0.9300C16—C201.381 (2)
C3—C41.391 (2)C17—C181.370 (2)
C3—C71.482 (2)C17—H170.9300
C4—C51.375 (2)C18—C191.374 (2)
C4—H40.9300C18—H180.9300
C5—C61.387 (2)C19—C201.375 (2)
C5—H50.9300C19—H190.9300
C6—C131.489 (2)C20—H200.9300
C13—N1—C14128.47 (13)C9—C10—H10119.9
C13—N1—H1115.8C11—C10—H10119.9
C14—N1—H1115.8C10—C11—C12120.4 (2)
C14—N2—C15123.28 (13)C10—C11—H11119.8
C14—N2—H2118.4C12—C11—H11119.8
C15—N2—H2118.4C7—C12—C11120.35 (19)
C16—N3—C17117.48 (13)C7—C12—H12119.8
C2—C1—C6120.47 (15)C11—C12—H12119.8
C2—C1—H1A119.8O1—C13—N1122.47 (14)
C6—C1—H1A119.8O1—C13—C6122.08 (14)
C1—C2—C3121.59 (15)N1—C13—C6115.45 (13)
C1—C2—H2A119.2N2—C14—N1117.11 (13)
C3—C2—H2A119.2N2—C14—S1124.42 (12)
C2—C3—C4117.39 (14)N1—C14—S1118.47 (11)
C2—C3—C7120.20 (14)N2—C15—C16110.45 (12)
C4—C3—C7122.41 (14)N2—C15—H15A109.6
C5—C4—C3121.30 (14)C16—C15—H15A109.6
C5—C4—H4119.4N2—C15—H15B109.6
C3—C4—H4119.4C16—C15—H15B109.6
C4—C5—C6120.79 (15)H15A—C15—H15B108.1
C4—C5—H5119.6N3—C16—C20122.55 (14)
C6—C5—H5119.6N3—C16—C15117.53 (13)
C1—C6—C5118.42 (14)C20—C16—C15119.92 (13)
C1—C6—C13123.02 (14)N3—C17—C18123.61 (15)
C5—C6—C13118.53 (14)N3—C17—H17118.2
C12—C7—C8118.43 (16)C18—C17—H17118.2
C12—C7—C3120.95 (16)C17—C18—C19118.35 (15)
C8—C7—C3120.60 (15)C17—C18—H18120.8
C9—C8—C7120.47 (19)C19—C18—H18120.8
C9—C8—H8119.8C18—C19—C20119.16 (15)
C7—C8—H8119.8C18—C19—H19120.4
C10—C9—C8120.2 (2)C20—C19—H19120.4
C10—C9—H9119.9C19—C20—C16118.86 (15)
C8—C9—H9119.9C19—C20—H20120.6
C9—C10—C11120.11 (19)C16—C20—H20120.6
C6—C1—C2—C30.3 (3)C14—N1—C13—O16.5 (3)
C1—C2—C3—C4−1.6 (3)C14—N1—C13—C6−173.11 (16)
C1—C2—C3—C7179.29 (16)C1—C6—C13—O1−156.33 (17)
C2—C3—C4—C51.2 (2)C5—C6—C13—O121.6 (2)
C7—C3—C4—C5−179.76 (15)C1—C6—C13—N123.3 (2)
C3—C4—C5—C60.6 (2)C5—C6—C13—N1−158.76 (15)
C2—C1—C6—C51.5 (3)C15—N2—C14—N1−178.94 (15)
C2—C1—C6—C13179.51 (16)C15—N2—C14—S11.9 (2)
C4—C5—C6—C1−2.0 (2)C13—N1—C14—N2−3.7 (3)
C4—C5—C6—C13179.95 (15)C13—N1—C14—S1175.48 (14)
C2—C3—C7—C12141.85 (17)C14—N2—C15—C16170.01 (14)
C4—C3—C7—C12−37.2 (2)C17—N3—C16—C20−0.1 (2)
C2—C3—C7—C8−36.5 (2)C17—N3—C16—C15179.56 (14)
C4—C3—C7—C8144.45 (17)N2—C15—C16—N313.4 (2)
C12—C7—C8—C9−1.5 (3)N2—C15—C16—C20−166.90 (14)
C3—C7—C8—C9176.90 (16)C16—N3—C17—C180.2 (2)
C7—C8—C9—C100.1 (3)N3—C17—C18—C190.0 (3)
C8—C9—C10—C111.1 (3)C17—C18—C19—C20−0.3 (3)
C9—C10—C11—C12−0.8 (3)C18—C19—C20—C160.5 (3)
C8—C7—C12—C111.8 (3)N3—C16—C20—C19−0.2 (2)
C3—C7—C12—C11−176.64 (16)C15—C16—C20—C19−179.91 (15)
C10—C11—C12—C7−0.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.992.6681 (19)135
N2—H2···N30.862.242.6488 (19)109
N1—H1···S1i0.862.793.4759 (17)138

Symmetry codes: (i) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2519).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Arif, M. A. M. & Yamin, B. M. (2007). Acta Cryst. E63, o3594.
  • Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97, University of Göttingen, Germany.
  • Sheldrick, G. M. (1997b). SHELXTL Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography