PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m286.
Published online 2008 January 4. doi:  10.1107/S1600536807067876
PMCID: PMC2960297

Tetra-μ-benzoato-bis­[(quinoxaline)copper(II)]

Abstract

The paddlewheel-type centrosymmetric dinuclear title complex, [Cu2(C7H5O2)4(C8H6N2)2], contains four bridging benzoate groups and two terminal quinoxaline ligands. The octa­hedral coordination around each Cu atom, with four O atoms in the equatorial plane, is completed by an N atom of a quinoxaline mol­ecule [Cu—N = 2.2465 (18) Å] and by the second Cu atom [Cu(...)Cu = 2.668 (5) Å]. The Cu atom is 0.216 Å out of the plane of the four O atoms.

Related literature

For the related structure, Cu2(O2CPh)4(py)2 (py = pyridine), see: Speier & Fülöp (1989 [triangle]). For background information, see: Cotton & Walton (1993 [triangle]); Pichon et al. (2007 [triangle]); Goto et al. (2007 [triangle]); Takamizawa et al. (2004 [triangle]); Casarin et al. (2005 [triangle]); Deka et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m286-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C7H5O2)4(C8H6N2)2]
  • M r = 871.82
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m286-efi1.jpg
  • a = 10.1423 (16) Å
  • b = 10.3400 (17) Å
  • c = 10.5148 (17) Å
  • α = 65.459 (2)°
  • β = 73.063 (3)°
  • γ = 82.142 (3)°
  • V = 959.4 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.17 mm−1
  • T = 293 (2) K
  • 0.15 × 0.10 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 5377 measured reflections
  • 3668 independent reflections
  • 2983 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.080
  • S = 0.96
  • 3668 reflections
  • 262 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 1998 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067876/dn2301sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067876/dn2301Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Environmental Technology Educational Innovation Program (2006) of the Ministry of the Environment is gratefully acknowledged.

supplementary crystallographic information

Comment

The dinuclear metal carboxylates, M2(O2CR)4, are important for the study of structures and metal-metal interaction (Cotton & Walton, 1993). Among them copper(II) carboxylates are used as building blocks to form a pillard-grid MOF with large pores (Pichon et al., 2007), and copper(II) benzoate pyrazine is used as the organic-inorganic hybrid complex that adsorbs gas molecules through clathrate formation (Goto et al., 2007, Takamizawa et al., 2004). Due to different coordination modes of carboxylates (Casarin et al., 2005), it is essential to have control on the binding of carboxylate to a metal ion in specific manner in the presence of other ligands (Deka et al., 2006). Controlling the binding of carboxylate will make it possible to synthesize complexes having new structures. We report here on the structure of new copper(II) benzoate with quinoxaline.

Asymmetric unit contains half of whole molecule, and there is an inversion center in the middle of Cu—Cu bond. Symmetric operation (-x + 2, -y + 1, -z + 1) produces a paddle-wheel type dinuclear copper-benzoate complex (Fig. 1). The paddle-wheel type dinuclear complex is constructed by four bridging benzoate groups and two terminal quinoxaline ligands. The octahedral coordination around the copper atom is completed by nitrogen atom of quinoxaline molecule (Cu—N 2.2465 (18) Å) and by the second copper atom (Cu···Cu 2.668 (5) Å). The copper atom is 0.216 Å out of the plane of the four oxygen atoms.

Experimental

19.0 mg (0.1 mmol) of Cu(NO3)2.2.5H2O and 28.0 mg (0.2 mmol) of C6H5COONH4 were dissolved in 4 ml me thanol and carefully layered by 4 ml acetone solution of quinoxaline ligand (26.0 mg, 0.2 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.

Refinement

H atoms were placed in calculated positions with C—H distances of 0.93 Å. They were included in the refinement in riding-motion approximation with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are shown at the 30% probability level.

Crystal data

[Cu2(C7H5O2)4(C8H6N2)2]Z = 1
Mr = 871.82F000 = 446
Triclinic, P1Dx = 1.509 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 10.1423 (16) ÅCell parameters from 2414 reflections
b = 10.3400 (17) Åθ = 2.4–27.2º
c = 10.5148 (17) ŵ = 1.17 mm1
α = 65.459 (2)ºT = 293 (2) K
β = 73.063 (3)ºBlock, blue
γ = 82.142 (3)º0.15 × 0.10 × 0.08 mm
V = 959.4 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2983 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Monochromator: graphiteθmax = 26.0º
T = 293(2) Kθmin = 2.1º
[var phi] and ω scansh = −6→12
Absorption correction: nonek = −12→12
5377 measured reflectionsl = −11→12
3668 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.080  w = 1/[σ2(Fo2) + (0.0403P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.002
3668 reflectionsΔρmax = 0.28 e Å3
262 parametersΔρmin = −0.41 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu11.11111 (3)0.47628 (3)0.40624 (3)0.03419 (11)
O110.99508 (16)0.32526 (17)0.43180 (19)0.0499 (5)
O121.18983 (16)0.63828 (16)0.40754 (17)0.0440 (4)
C110.8752 (2)0.2967 (2)0.5137 (2)0.0369 (5)
C120.8048 (2)0.1757 (2)0.5189 (2)0.0351 (5)
C130.8728 (3)0.0988 (3)0.4383 (3)0.0492 (6)
H130.96180.12300.38000.059*
C140.8095 (3)−0.0143 (3)0.4433 (3)0.0568 (7)
H140.8564−0.06660.38970.068*
C150.6776 (3)−0.0490 (3)0.5274 (3)0.0498 (7)
H150.6349−0.12470.53060.060*
C160.6087 (3)0.0279 (3)0.6069 (3)0.0470 (6)
H160.51910.00440.66370.056*
C170.6716 (2)0.1398 (2)0.6030 (2)0.0408 (6)
H170.62430.19160.65720.049*
O211.02164 (17)0.60977 (18)0.25640 (18)0.0495 (4)
O221.16461 (17)0.35143 (16)0.58557 (17)0.0452 (4)
C210.9089 (2)0.6714 (2)0.2873 (2)0.0370 (5)
C220.8591 (2)0.7841 (2)0.1645 (2)0.0382 (5)
C230.7344 (3)0.8541 (3)0.1901 (3)0.0535 (7)
H230.67710.82490.28370.064*
C240.6936 (3)0.9660 (3)0.0797 (3)0.0694 (9)
H240.60961.01230.09930.083*
C250.7761 (4)1.0094 (3)−0.0586 (3)0.0678 (9)
H250.74971.0866−0.13290.081*
C260.8975 (3)0.9385 (3)−0.0869 (3)0.0666 (8)
H260.95230.9660−0.18150.080*
C270.9401 (3)0.8263 (3)0.0233 (3)0.0540 (7)
H271.02320.77910.00260.065*
N311.28562 (19)0.41356 (19)0.25284 (19)0.0354 (4)
N321.4763 (2)0.2919 (2)0.0746 (2)0.0522 (6)
C311.2485 (3)0.3591 (3)0.1760 (3)0.0457 (6)
H311.15540.36010.18040.055*
C321.3443 (3)0.2991 (3)0.0868 (3)0.0519 (7)
H321.31150.26310.03440.062*
C331.5184 (2)0.3494 (2)0.1517 (3)0.0443 (6)
C341.6606 (3)0.3475 (3)0.1428 (3)0.0615 (8)
H341.72370.30590.08620.074*
C351.7047 (3)0.4059 (3)0.2163 (3)0.0684 (9)
H351.79840.40480.20890.082*
C361.6121 (3)0.4678 (3)0.3030 (3)0.0608 (8)
H361.64480.50780.35230.073*
C371.4736 (3)0.4702 (3)0.3163 (3)0.0468 (6)
H371.41240.51060.37530.056*
C381.4240 (2)0.4112 (2)0.2406 (2)0.0363 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.03083 (17)0.03639 (17)0.04054 (18)−0.00078 (11)−0.00605 (12)−0.02234 (13)
O110.0379 (10)0.0541 (11)0.0676 (12)−0.0115 (8)0.0016 (9)−0.0407 (9)
O120.0422 (10)0.0443 (10)0.0528 (10)−0.0082 (8)−0.0025 (8)−0.0307 (8)
C110.0375 (14)0.0357 (13)0.0414 (13)−0.0001 (11)−0.0138 (12)−0.0168 (11)
C120.0380 (13)0.0327 (12)0.0396 (13)−0.0006 (10)−0.0150 (11)−0.0159 (10)
C130.0387 (14)0.0505 (15)0.0651 (17)−0.0080 (12)−0.0026 (13)−0.0344 (14)
C140.0577 (18)0.0534 (17)0.0745 (19)−0.0017 (14)−0.0120 (15)−0.0430 (15)
C150.0589 (18)0.0380 (14)0.0593 (16)−0.0103 (12)−0.0237 (14)−0.0174 (12)
C160.0423 (15)0.0473 (15)0.0485 (15)−0.0119 (12)−0.0099 (12)−0.0141 (12)
C170.0433 (14)0.0411 (14)0.0403 (13)−0.0041 (11)−0.0112 (11)−0.0172 (11)
O210.0420 (10)0.0636 (11)0.0481 (10)0.0139 (9)−0.0157 (8)−0.0291 (9)
O220.0435 (10)0.0467 (10)0.0421 (10)0.0063 (8)−0.0103 (8)−0.0171 (8)
C210.0380 (14)0.0378 (13)0.0463 (14)−0.0037 (11)−0.0137 (12)−0.0246 (11)
C220.0433 (14)0.0392 (13)0.0408 (13)−0.0027 (11)−0.0134 (11)−0.0220 (11)
C230.0600 (18)0.0604 (17)0.0413 (14)0.0139 (14)−0.0151 (13)−0.0246 (13)
C240.089 (2)0.067 (2)0.0587 (19)0.0328 (18)−0.0347 (18)−0.0315 (16)
C250.100 (3)0.0545 (18)0.0569 (19)0.0055 (18)−0.0405 (19)−0.0190 (15)
C260.081 (2)0.076 (2)0.0396 (16)−0.0212 (18)−0.0102 (16)−0.0173 (15)
C270.0476 (16)0.0667 (19)0.0508 (16)−0.0041 (14)−0.0096 (14)−0.0275 (14)
N310.0364 (11)0.0353 (10)0.0357 (10)−0.0006 (8)−0.0072 (9)−0.0169 (9)
N320.0573 (15)0.0457 (13)0.0505 (13)0.0041 (11)−0.0010 (11)−0.0263 (11)
C310.0421 (15)0.0506 (15)0.0452 (14)−0.0046 (12)−0.0048 (12)−0.0230 (12)
C320.0621 (19)0.0520 (16)0.0474 (15)−0.0075 (14)−0.0044 (14)−0.0299 (13)
C330.0401 (14)0.0364 (13)0.0419 (14)0.0056 (11)−0.0030 (12)−0.0084 (11)
C340.0439 (16)0.0628 (19)0.0628 (19)0.0138 (14)−0.0055 (15)−0.0205 (15)
C350.0355 (16)0.084 (2)0.065 (2)0.0011 (15)−0.0125 (15)−0.0107 (17)
C360.0482 (17)0.078 (2)0.0540 (17)−0.0079 (15)−0.0188 (15)−0.0183 (15)
C370.0422 (15)0.0528 (16)0.0447 (14)−0.0024 (12)−0.0100 (12)−0.0189 (12)
C380.0356 (13)0.0332 (12)0.0331 (12)0.0000 (10)−0.0055 (10)−0.0089 (10)

Geometric parameters (Å, °)

Cu1—O121.9582 (15)C23—C241.375 (3)
Cu1—O111.9660 (15)C23—H230.9300
Cu1—O211.9735 (16)C24—C251.367 (4)
Cu1—O221.9746 (16)C24—H240.9300
Cu1—N312.2465 (18)C25—C261.366 (4)
Cu1—Cu1i2.6683 (6)C25—H250.9300
O11—C111.258 (3)C26—C271.383 (4)
O12—C11i1.263 (2)C26—H260.9300
C11—O12i1.263 (2)C27—H270.9300
C11—C121.498 (3)N31—C311.313 (3)
C12—C131.377 (3)N31—C381.370 (3)
C12—C171.383 (3)N32—C321.302 (3)
C13—C141.383 (3)N32—C331.366 (3)
C13—H130.9300C31—C321.413 (3)
C14—C151.370 (4)C31—H310.9300
C14—H140.9300C32—H320.9300
C15—C161.371 (3)C33—C341.415 (4)
C15—H150.9300C33—C381.416 (3)
C16—C171.376 (3)C34—C351.351 (4)
C16—H160.9300C34—H340.9300
C17—H170.9300C35—C361.395 (4)
O21—C211.255 (3)C35—H350.9300
O22—C21i1.267 (3)C36—C371.369 (3)
C21—O22i1.267 (3)C36—H360.9300
C21—C221.500 (3)C37—C381.407 (3)
C22—C231.381 (3)C37—H370.9300
C22—C271.386 (3)
O12—Cu1—O11167.30 (6)C27—C22—C21120.9 (2)
O12—Cu1—O2189.25 (7)C24—C23—C22121.2 (3)
O11—Cu1—O2188.44 (7)C24—C23—H23119.4
O12—Cu1—O2289.63 (7)C22—C23—H23119.4
O11—Cu1—O2289.93 (7)C25—C24—C23120.2 (3)
O21—Cu1—O22167.48 (6)C25—C24—H24119.9
O12—Cu1—N31101.20 (7)C23—C24—H24119.9
O11—Cu1—N3191.45 (6)C26—C25—C24119.5 (3)
O21—Cu1—N3195.59 (7)C26—C25—H25120.3
O22—Cu1—N3196.86 (7)C24—C25—H25120.3
O12—Cu1—Cu1i85.49 (5)C25—C26—C27120.9 (3)
O11—Cu1—Cu1i81.87 (5)C25—C26—H26119.6
O21—Cu1—Cu1i85.08 (5)C27—C26—H26119.6
O22—Cu1—Cu1i82.40 (5)C26—C27—C22120.0 (3)
N31—Cu1—Cu1i173.27 (5)C26—C27—H27120.0
C11—O11—Cu1125.83 (15)C22—C27—H27120.0
C11i—O12—Cu1121.79 (15)C31—N31—C38116.26 (19)
O11—C11—O12i125.0 (2)C31—N31—Cu1115.16 (15)
O11—C11—C12117.4 (2)C38—N31—Cu1128.20 (14)
O12i—C11—C12117.6 (2)C32—N32—C33115.7 (2)
C13—C12—C17119.0 (2)N31—C31—C32122.6 (2)
C13—C12—C11119.8 (2)N31—C31—H31118.7
C17—C12—C11121.1 (2)C32—C31—H31118.7
C12—C13—C14120.4 (2)N32—C32—C31123.1 (2)
C12—C13—H13119.8N32—C32—H32118.5
C14—C13—H13119.8C31—C32—H32118.5
C15—C14—C13120.0 (2)N32—C33—C34119.2 (2)
C15—C14—H14120.0N32—C33—C38122.0 (2)
C13—C14—H14120.0C34—C33—C38118.9 (2)
C14—C15—C16120.0 (2)C35—C34—C33120.1 (3)
C14—C15—H15120.0C35—C34—H34119.9
C16—C15—H15120.0C33—C34—H34119.9
C15—C16—C17120.3 (2)C34—C35—C36121.1 (3)
C15—C16—H16119.9C34—C35—H35119.4
C17—C16—H16119.9C36—C35—H35119.4
C16—C17—C12120.3 (2)C37—C36—C35120.6 (3)
C16—C17—H17119.8C37—C36—H36119.7
C12—C17—H17119.8C35—C36—H36119.7
C21—O21—Cu1122.18 (16)C36—C37—C38119.8 (2)
C21i—O22—Cu1125.03 (15)C36—C37—H37120.1
O21—C21—O22i125.1 (2)C38—C37—H37120.1
O21—C21—C22117.6 (2)N31—C38—C37120.2 (2)
O22i—C21—C22117.2 (2)N31—C38—C33120.3 (2)
C23—C22—C27118.2 (2)C37—C38—C33119.4 (2)
C23—C22—C21120.8 (2)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2301).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1998). SHELXTL Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Casarin, M., Corvaja, C., Nicola, C. D., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem.44, 6265–6276. [PubMed]
  • Cotton, F. A. & Walton, R. A. (1993). Multiple Bonds Between Metal Atoms, 2nd ed. New York: Oxford University Press.
  • Deka, K., Sarma, R. & Baruah, J. B. (2006). Inorg. Chem. Commun.9, 931–934.
  • Goto, M., Furukawa, M., Miyamoto, J., Kanoh, H. & Kaneko, K. (2007). Langmuir, 23, 5264–5266. [PubMed]
  • Pichon, A., Fierro, C. M., Nieuwenhuyzen, M. & James, L. (2007). CrystEngComm, 9, 449–451.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Speier, G. & Fülöp, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331–2333.
  • Takamizawa, S., Nakata, E. & Saito, T. (2004). Inorg. Chem. Commun.7, 1–3.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography