PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o524.
Published online 2008 January 25. doi:  10.1107/S1600536807068316
PMCID: PMC2960296

(Z)-5-(4-Fluoro­benzyl­idene)-1,3-thia­zolidine-2,4-dione

Abstract

In the title compound, C10H6FNO2S, the benzene and thia­zolidine rings make a dihedral angle of 7.52 (3)°. Intra­molecular C—H(...)O and C—H(...)S hydrogen bonds result in the formation of nearly planar five- and six-membered rings; the adjacent rings are nearly coplanar. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules.

Related literature

For general background, see: Barreca et al. (2002 [triangle]); Botti et al. (1996 [triangle]). For a related structure, see: Guo et al. (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o524-scheme1.jpg

Experimental

Crystal data

  • C10H6FNO2S
  • M r = 223.22
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o524-efi1.jpg
  • a = 26.519 (5) Å
  • b = 36.509 (7) Å
  • c = 3.8490 (8) Å
  • V = 3726.6 (13) Å3
  • Z = 16
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 294 (2) K
  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.905, T max = 0.967
  • 2087 measured reflections
  • 1059 independent reflections
  • 790 reflections with I > 2σ(I)
  • R int = 0.042
  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.121
  • S = 1.04
  • 1059 reflections
  • 136 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.66 e Å−3
  • Absolute structure: Flack (1983 [triangle]), no Friedel pairs
  • Flack parameter: 0.0 (2)

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Siemens, 1996 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068316/hk2407sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068316/hk2407Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center for Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Thiazolidines are an important class of heteroaromatic compounds and have widespread applications from pharmaceuticals (Barreca et al., 2002) to materials (Botti et al., 1996). As part of our ongoing studies in this area (Guo et al., 2006), we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), bond lengths and angles are within normal ranges (Allen et al., 1987). The intramolecular C—H···O and C—H···S hydrogen bonds (Table 1) result in the formations of nearly planar five- and six-membered rings; C (S/H5A/C4/C5/C7/C8) and D (O2/H7A/C7—C9). Rings A (C1—C6) and B (N/S/C8—C10) are, of course, planar and the dihedral angles between them are A/B = 7.52 (3)°, A/C = 4.73 (3)°, A/D = 6.90 (3)°, B/C = 3.63 (2)°, B/D = 2.39 (3)° and C/D = 4.56 (2)°. So, the adjacent rings are also nearly co-planar.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, thiazolidine-2,4-dione (10 mmol) and 4-fluorobenzaldehyde (10 mmol) were dissolved in ethanol (10 ml) in a round-bottomed flask (50 ml) and 5 drops of piperidine were added. The flask was heated in a modified domestic microwave oven at 300 W for 5 min. After cooling, the mixture was poured into water and the crude compound (I) filtered out. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H6FNO2SF000 = 1824
Mr = 223.22Dx = 1.591 Mg m3
Orthorhombic, Fdd2Mo Kα radiation λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 25 reflections
a = 26.519 (5) Åθ = 9–13º
b = 36.509 (7) ŵ = 0.34 mm1
c = 3.8490 (8) ÅT = 294 (2) K
V = 3726.6 (13) Å3Block, colorles
Z = 160.30 × 0.10 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.042
Radiation source: fine-focus sealed tubeθmax = 26.0º
Monochromator: graphiteθmin = 1.9º
T = 294(2) Kh = 0→32
ω/2θ scansk = 0→44
Absorption correction: ψ scan(North et al., 1968)l = −4→0
Tmin = 0.905, Tmax = 0.9673 standard reflections
2087 measured reflections every 120 min
1059 independent reflections intensity decay: none
790 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053  w = 1/[σ2(Fo2) + (0.05P)2 + 3P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.38 e Å3
1059 reflectionsΔρmin = −0.66 e Å3
136 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), no Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.0 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.08943 (4)−0.00189 (3)−0.0089 (5)0.0379 (3)
F−0.06109 (11)0.13395 (8)0.6207 (12)0.0681 (12)
O10.13745 (13)−0.05739 (9)−0.3062 (14)0.0619 (12)
O20.21942 (10)0.03754 (8)0.2142 (14)0.0493 (10)
N0.18501 (14)−0.01228 (9)−0.0627 (14)0.0425 (11)
H0A0.2136−0.0219−0.11500.051*
C1−0.01787 (17)0.11646 (12)0.5430 (15)0.0416 (12)
C20.02675 (18)0.13443 (12)0.5921 (16)0.0484 (15)
H2A0.02730.15840.67440.058*
C30.07078 (19)0.11621 (11)0.5166 (17)0.0444 (13)
H3A0.10150.12780.55590.053*
C40.07035 (16)0.08082 (10)0.3826 (13)0.0346 (11)
C50.02378 (16)0.06382 (12)0.3314 (15)0.0400 (12)
H5A0.02250.04020.24210.048*
C6−0.02016 (15)0.08195 (12)0.4125 (16)0.0452 (14)
H6A−0.05120.07070.37820.054*
C70.11827 (16)0.06366 (11)0.3095 (14)0.0352 (10)
H7A0.14620.07720.37820.042*
C80.12929 (15)0.03151 (11)0.1597 (14)0.0317 (10)
C90.18224 (17)0.02026 (11)0.1107 (15)0.0370 (12)
C100.14053 (17)−0.02927 (12)−0.1510 (17)0.0450 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0303 (5)0.0391 (5)0.0444 (6)−0.0005 (4)0.0015 (7)−0.0028 (6)
F0.0400 (16)0.0705 (18)0.094 (3)0.0212 (14)0.003 (2)−0.024 (2)
O10.058 (2)0.0465 (17)0.081 (3)0.0105 (16)0.000 (3)−0.026 (2)
O20.0267 (16)0.0444 (16)0.077 (3)0.0002 (12)−0.0039 (19)0.001 (2)
N0.0295 (18)0.0403 (18)0.058 (3)0.0068 (15)0.001 (2)0.001 (2)
C10.033 (2)0.051 (2)0.041 (3)0.012 (2)0.003 (2)−0.009 (3)
C20.047 (3)0.042 (2)0.056 (4)0.012 (2)−0.009 (3)−0.018 (3)
C30.047 (3)0.036 (2)0.050 (3)−0.0028 (19)−0.002 (3)−0.007 (3)
C40.031 (2)0.036 (2)0.036 (3)0.0030 (17)−0.002 (2)−0.002 (2)
C50.035 (2)0.038 (2)0.047 (3)0.0012 (17)−0.001 (2)−0.006 (2)
C60.0209 (18)0.056 (3)0.058 (4)−0.0019 (18)0.007 (2)−0.018 (3)
C70.030 (2)0.042 (2)0.033 (3)−0.0057 (17)0.000 (2)0.008 (2)
C80.024 (2)0.040 (2)0.031 (3)0.0007 (16)−0.003 (2)0.009 (2)
C90.032 (2)0.037 (2)0.042 (3)0.0039 (18)−0.001 (2)0.011 (2)
C100.038 (2)0.042 (2)0.055 (4)0.0065 (19)−0.002 (3)0.002 (3)

Geometric parameters (Å, °)

S—C81.739 (4)C2—H2A0.9300
S—C101.770 (5)C3—C41.391 (6)
F—C11.346 (5)C3—H3A0.9300
O1—C101.191 (6)C4—C51.396 (6)
O2—C91.237 (5)C4—C71.445 (6)
N—C91.364 (6)C5—C61.376 (6)
N—C101.375 (6)C5—H5A0.9300
N—H0A0.8600C6—H6A0.9300
C1—C61.358 (6)C7—C81.340 (6)
C1—C21.366 (7)C7—H7A0.9300
C2—C31.375 (6)C8—C91.475 (6)
C8—S—C1092.6 (2)C6—C5—H5A119.9
C9—N—C10117.9 (4)C4—C5—H5A119.9
C9—N—H0A121.1C1—C6—C5119.5 (4)
C10—N—H0A121.1C1—C6—H6A120.3
F—C1—C6119.0 (4)C5—C6—H6A120.3
F—C1—C2118.6 (4)C8—C7—C4131.0 (4)
C6—C1—C2122.4 (4)C8—C7—H7A114.5
C1—C2—C3118.3 (4)C4—C7—H7A114.5
C1—C2—H2A120.9C7—C8—C9120.4 (4)
C3—C2—H2A120.9C7—C8—S129.9 (3)
C2—C3—C4121.4 (4)C9—C8—S109.6 (3)
C2—C3—H3A119.3O2—C9—N124.0 (4)
C4—C3—H3A119.3O2—C9—C8125.1 (4)
C3—C4—C5118.2 (4)N—C9—C8110.9 (4)
C3—C4—C7117.9 (4)O1—C10—N124.9 (4)
C5—C4—C7123.9 (4)O1—C10—S126.1 (4)
C6—C5—C4120.2 (4)N—C10—S109.0 (3)
F—C1—C2—C3179.1 (5)C4—C7—C8—S0.6 (9)
C6—C1—C2—C3−2.2 (9)C10—S—C8—C7177.2 (5)
C1—C2—C3—C42.1 (9)C10—S—C8—C9−1.5 (4)
C2—C3—C4—C5−1.0 (8)C10—N—C9—O2177.5 (5)
C2—C3—C4—C7179.8 (5)C10—N—C9—C8−1.9 (6)
C3—C4—C5—C60.0 (8)C7—C8—C9—O23.9 (8)
C7—C4—C5—C6179.1 (5)S—C8—C9—O2−177.2 (4)
F—C1—C6—C5179.8 (5)C7—C8—C9—N−176.7 (4)
C2—C1—C6—C51.2 (9)S—C8—C9—N2.2 (5)
C4—C5—C6—C1−0.1 (9)C9—N—C10—O1178.9 (6)
C3—C4—C7—C8−174.7 (5)C9—N—C10—S0.7 (6)
C5—C4—C7—C86.3 (9)C8—S—C10—O1−177.6 (6)
C4—C7—C8—C9179.3 (5)C8—S—C10—N0.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.861.982.830 (5)171
C5—H5A···S0.932.543.241 (5)133
C7—H7A···O20.932.502.870 (5)104

Symmetry codes: (i) −x+1/2, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2407).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Barreca, M. L., Balzarini, J., Chimirri, A., De Clercq, E., De Luca, L., Holtje, H. D., Holtje, M., Monforte, A. M., Monforte, P., Pannecouque, C., Rao, A. & Zappala, M. (2002). J. Med. Chem.45, 5410–5413. [PubMed]
  • Botti, P., Pallin, T. D. & Tam, J. P. (1996). J. Am. Chem. Soc.118, 10018–10024.
  • Enraf–Nonius (1989). CAD-4 Software Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Guo, C., Zhang, D.-M., Tang, Q.-G. & Sun, H.-S. (2006). Acta Cryst. E62, o3994–o3995.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SHELXTL Version 5.0). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography