PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o450.
Published online 2008 January 16. doi:  10.1107/S1600536807065427
PMCID: PMC2960295

2-Methyl-2-phenyl-1,2-dihydro­quinazolin-4(3H)-one

Abstract

In the mol­ecule of the title compound, C15H14N2O, the six-membered 1,3-diaza ring assumes an envelope conformation. The two benzene ring planes are almost perpendicular to each other, making a dihedral angle of 85.53 (5)°. Supra­molecular aggregation is mainly effected by N—H(...)O hydrogen bonding.

Related literature

For general background, see: Jackson et al. (2007 [triangle]). For related structures, see: Shi et al. (2003 [triangle], 2004 [triangle]); Yu et al. (1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o450-scheme1.jpg

Experimental

Crystal data

  • C15H14N2O
  • M r = 238.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o450-efi1.jpg
  • a = 8.4891 (7) Å
  • b = 8.7741 (8) Å
  • c = 16.1351 (16) Å
  • β = 93.543 (7)°
  • V = 1199.51 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 113 (2) K
  • 0.28 × 0.24 × 0.22 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: none
  • 14326 measured reflections
  • 2835 independent reflections
  • 2459 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.101
  • S = 1.11
  • 2835 reflections
  • 172 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CrystalClear (Rigaku, 2004 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065427/xu2381sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065427/xu2381Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Beijing Institute of Technology for financial support and Nankai University for the X-ray diffraction analysis.

supplementary crystallographic information

Comment

1,2-Dihydroquinazolin-4(3H)-ones are much important and useful nitrogen-containing heterocycles due to their diverse biological activities. They have been widely used as antitumors, α-adrenoceptors antagonists, diuretics, herbicides and plant growth relugators (Jackson et al., 2007). The present investigation is aimed at the study of the molecular and supramolecular architecture of the title compound, (I), and may serve as a forerunner to a study of the correlation of these features with its biological activity.

The molecular structure of (I) is shown in Fig. 1. The bond distances and angles (Table 1) agree with those found in a reported 1,2-dihydroquinazolin-4(3H)-ones (Shi et al., 2004). The 1,3-diaza ring exists in an envelope conformation, similar to that found in 4(3H)-quinazolinone derivatives (Yu et al., 1992; Shi et al., 2003). Two phenyl planes are almost perpendicular to each other with an angle of 85.53 (5)°. The O1 atom is deviated from C2-phenyl plane with 0.4706 Å. The crystal structure is stabilized by N—H···O interactions (Table 2, Fig. 2).

Experimental

To a solution of DMF (10 ml) and ZnCl2 (6 mmol) were added substituted 2-aminobenzonitrile (6 mmol) and acetophenone (6 mmol). The mixture was heated at reflux for 3 h. After completion of the reaction as indicated by TLC (eluent: ethyl acetate), the cooled reaction mixture was quenched with water and the precipitate was separated by filtration. The filtration residue was dispersed into water and titrated to pH 12–13 by 20% sodium hydroxide. After filtration, the product was isolated by column chromatography (200–300 mesh silica gel, ethyl acetate-petroleum with 1:2); yield 62%. Single crystals were obtained from an ethanol solution by slow evaporation at room temperature.

Refinement

Imino H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed inca lucalculated positions with C—H = 0.95 (aromatic) or 0.98 Å (methyl), and refined in riding mode with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) (for methyl group).

Figures

Fig. 1.
The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The packing of (I), viewed down the a axis, showing one layer of molecules connected by N—H···O hydrogen bonds (dashed lines).

Crystal data

C15H14N2OF000 = 504
Mr = 238.28Dx = 1.319 Mg m3
Monoclinic, P21/nMelting point = 505–507 K
Hall symbol: -P 2ynMo Kα radiation λ = 0.71070 Å
a = 8.4891 (7) ÅCell parameters from 3772 reflections
b = 8.7741 (8) Åθ = 2.6–27.9º
c = 16.1351 (16) ŵ = 0.08 mm1
β = 93.543 (7)ºT = 113 (2) K
V = 1199.51 (19) Å3Prism, colorless
Z = 40.28 × 0.24 × 0.22 mm

Data collection

Rigaku Saturn diffractometer2835 independent reflections
Radiation source: rotating anode2459 reflections with I > 2σ(I)
Monochromator: confocalRint = 0.034
Detector resolution: 7.31 pixels mm-1θmax = 27.9º
T = 113(2) Kθmin = 2.6º
ω scansh = −11→11
Absorption correction: nonek = −11→11
14326 measured reflectionsl = −20→21

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101  w = 1/[σ2(Fo2) + (0.0504P)2 + 0.2057P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2835 reflectionsΔρmax = 0.29 e Å3
172 parametersΔρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. IR (KBr, cm-1): 3389, 3181, 1663, 1613; 1H NMR (DMSO-d6, 400 MHz) δH: 1.79 (3H, s, CH3), 6.63–6.67 (1H, m, J=0.8, 8.0 Hz, ArH), 6.83 (1H, t, J=0.8, 8.0 Hz, ArH), 6.89 (1H, s, NH), 7.21–7.23 (2H, m, ArH), 7.28–7.32 (2H, m, ArH), 7.61–7.68 (3H, m, ArH), 7.93 (1H, s, NH); 13 C NMR (DMSO-d6, 100 MHz) δC: 31.14, 71.54, 115.36, 116.67, 118.26, 126.09 (2 C), 128.00, 128.45, 128.87 (2 C), 134.05, 147.95, 148.23, 164.90; MS (ESI): m/z (%) =239.1 (100) [M+H]+; C15H14N2O: calcd. C 75.61, H 5.92, N 11.76; found C 75.28, H 6.11, N 11.43.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.41106 (9)0.13177 (9)−0.08264 (4)0.0236 (2)
N10.44850 (10)0.16028 (10)0.05706 (5)0.0173 (2)
N20.38757 (11)0.38938 (10)0.12264 (6)0.0208 (2)
C10.38879 (12)0.20563 (11)−0.01835 (6)0.0168 (2)
C20.30141 (12)0.35144 (11)−0.02015 (6)0.0165 (2)
C30.30957 (12)0.44441 (11)0.05098 (6)0.0180 (2)
C40.24352 (13)0.59131 (12)0.04600 (7)0.0245 (2)
H40.25170.65710.09280.029*
C50.16659 (14)0.63954 (13)−0.02730 (8)0.0285 (3)
H50.12150.7387−0.03020.034*
C60.15378 (13)0.54548 (13)−0.09718 (7)0.0261 (3)
H60.09830.5792−0.14670.031*
C70.22271 (12)0.40276 (12)−0.09347 (6)0.0206 (2)
H70.21650.3390−0.14120.025*
C80.39390 (12)0.22450 (11)0.13376 (6)0.0170 (2)
C90.23069 (12)0.15939 (11)0.15239 (6)0.0174 (2)
C100.15071 (13)0.22173 (13)0.21771 (7)0.0236 (2)
H100.19730.30330.24930.028*
C110.00388 (15)0.16596 (14)0.23708 (8)0.0304 (3)
H11−0.04890.20900.28180.036*
C12−0.06521 (14)0.04741 (14)0.19100 (8)0.0321 (3)
H12−0.16590.00990.20360.038*
C130.01311 (14)−0.01636 (14)0.12637 (8)0.0289 (3)
H13−0.0340−0.09770.09490.035*
C140.16110 (13)0.03889 (12)0.10750 (7)0.0220 (2)
H140.2147−0.00610.06370.026*
C150.51453 (13)0.18452 (13)0.20463 (7)0.0234 (2)
H15A0.61700.22900.19350.035*
H15B0.52470.07350.20890.035*
H15C0.47920.22540.25690.035*
H10.4966 (17)0.0719 (18)0.0626 (9)0.036 (4)*
H20.3890 (18)0.4458 (18)0.1676 (9)0.040 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0313 (4)0.0223 (4)0.0173 (4)0.0078 (3)0.0024 (3)−0.0011 (3)
N10.0186 (4)0.0162 (4)0.0171 (4)0.0044 (3)0.0014 (3)0.0000 (3)
N20.0263 (5)0.0155 (4)0.0201 (5)0.0012 (4)−0.0037 (4)−0.0032 (3)
C10.0162 (5)0.0168 (5)0.0177 (5)0.0000 (4)0.0017 (4)0.0010 (4)
C20.0153 (5)0.0149 (5)0.0194 (5)0.0000 (4)0.0017 (4)0.0018 (4)
C30.0164 (5)0.0161 (5)0.0214 (5)−0.0014 (4)0.0017 (4)0.0013 (4)
C40.0292 (6)0.0161 (5)0.0285 (6)0.0017 (4)0.0026 (5)−0.0017 (4)
C50.0316 (6)0.0180 (5)0.0361 (7)0.0071 (4)0.0030 (5)0.0049 (5)
C60.0262 (6)0.0255 (6)0.0264 (6)0.0049 (4)−0.0018 (5)0.0079 (4)
C70.0197 (5)0.0214 (5)0.0207 (5)0.0001 (4)0.0007 (4)0.0021 (4)
C80.0197 (5)0.0154 (5)0.0154 (5)0.0027 (4)−0.0010 (4)−0.0011 (4)
C90.0189 (5)0.0176 (5)0.0155 (5)0.0045 (4)−0.0007 (4)0.0047 (4)
C100.0275 (6)0.0226 (5)0.0208 (5)0.0083 (4)0.0032 (4)0.0048 (4)
C110.0305 (6)0.0319 (6)0.0302 (6)0.0140 (5)0.0128 (5)0.0137 (5)
C120.0212 (6)0.0344 (7)0.0412 (7)0.0046 (5)0.0065 (5)0.0215 (6)
C130.0259 (6)0.0267 (6)0.0336 (6)−0.0049 (5)−0.0024 (5)0.0098 (5)
C140.0239 (5)0.0220 (5)0.0200 (5)−0.0008 (4)0.0007 (4)0.0030 (4)
C150.0241 (5)0.0246 (6)0.0206 (5)0.0044 (4)−0.0051 (4)−0.0021 (4)

Geometric parameters (Å, °)

O1—C11.2473 (12)C7—H70.9500
N1—C11.3489 (13)C8—C151.5279 (14)
N1—C81.4612 (13)C8—C91.5452 (14)
N1—H10.878 (16)C9—C141.3924 (15)
N2—C31.3834 (13)C9—C101.3997 (15)
N2—C81.4583 (13)C10—C111.3925 (17)
N2—H20.878 (15)C10—H100.9500
C1—C21.4782 (13)C11—C121.3874 (19)
C2—C71.3968 (14)C11—H110.9500
C2—C31.4062 (14)C12—C131.3886 (18)
C3—C41.4059 (15)C12—H120.9500
C4—C51.3816 (16)C13—C141.3976 (16)
C4—H40.9500C13—H130.9500
C5—C61.3961 (17)C14—H140.9500
C5—H50.9500C15—H15A0.9800
C6—C71.3820 (15)C15—H15B0.9800
C6—H60.9500C15—H15C0.9800
C1—N1—C8121.94 (8)N1—C8—C15108.20 (8)
C1—N1—H1119.9 (9)N2—C8—C9111.35 (8)
C8—N1—H1115.1 (9)N1—C8—C9110.94 (8)
C3—N2—C8117.47 (9)C15—C8—C9109.70 (8)
C3—N2—H2118.4 (10)C14—C9—C10118.59 (10)
C8—N2—H2117.3 (10)C14—C9—C8122.43 (9)
O1—C1—N1121.94 (9)C10—C9—C8118.98 (9)
O1—C1—C2122.35 (9)C11—C10—C9120.95 (11)
N1—C1—C2115.66 (9)C11—C10—H10119.5
C7—C2—C3120.07 (9)C9—C10—H10119.5
C7—C2—C1120.58 (9)C12—C11—C10119.85 (11)
C3—C2—C1119.13 (9)C12—C11—H11120.1
N2—C3—C4122.43 (10)C10—C11—H11120.1
N2—C3—C2118.46 (9)C11—C12—C13119.90 (11)
C4—C3—C2119.07 (10)C11—C12—H12120.1
C5—C4—C3119.70 (10)C13—C12—H12120.1
C5—C4—H4120.2C12—C13—C14120.16 (11)
C3—C4—H4120.2C12—C13—H13119.9
C4—C5—C6121.29 (10)C14—C13—H13119.9
C4—C5—H5119.4C9—C14—C13120.55 (10)
C6—C5—H5119.4C9—C14—H14119.7
C7—C6—C5119.27 (10)C13—C14—H14119.7
C7—C6—H6120.4C8—C15—H15A109.5
C5—C6—H6120.4C8—C15—H15B109.5
C6—C7—C2120.53 (10)H15A—C15—H15B109.5
C6—C7—H7119.7C8—C15—H15C109.5
C2—C7—H7119.7H15A—C15—H15C109.5
N2—C8—N1106.82 (8)H15B—C15—H15C109.5
N2—C8—C15109.74 (8)
C8—N1—C1—O1−165.49 (9)C3—N2—C8—C15167.04 (9)
C8—N1—C1—C217.02 (14)C3—N2—C8—C9−71.30 (11)
O1—C1—C2—C78.20 (15)C1—N1—C8—N2−45.85 (12)
N1—C1—C2—C7−174.31 (9)C1—N1—C8—C15−163.94 (9)
O1—C1—C2—C3−166.39 (10)C1—N1—C8—C975.67 (12)
N1—C1—C2—C311.10 (14)N2—C8—C9—C14127.89 (10)
C8—N2—C3—C4155.35 (10)N1—C8—C9—C149.06 (13)
C8—N2—C3—C2−26.98 (14)C15—C8—C9—C14−110.43 (11)
C7—C2—C3—N2179.56 (9)N2—C8—C9—C10−53.28 (12)
C1—C2—C3—N2−5.82 (14)N1—C8—C9—C10−172.12 (9)
C7—C2—C3—C4−2.69 (15)C15—C8—C9—C1068.40 (11)
C1—C2—C3—C4171.93 (9)C14—C9—C10—C11−0.68 (15)
N2—C3—C4—C5−179.80 (10)C8—C9—C10—C11−179.55 (9)
C2—C3—C4—C52.54 (16)C9—C10—C11—C12−0.31 (16)
C3—C4—C5—C6−0.44 (18)C10—C11—C12—C130.76 (17)
C4—C5—C6—C7−1.56 (18)C11—C12—C13—C14−0.19 (17)
C5—C6—C7—C21.42 (17)C10—C9—C14—C131.25 (15)
C3—C2—C7—C60.71 (16)C8—C9—C14—C13−179.92 (9)
C1—C2—C7—C6−173.83 (10)C12—C13—C14—C9−0.82 (17)
C3—N2—C8—N149.96 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.878 (16)1.970 (16)2.8456 (12)174.4 (13)

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2381).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jackson, J. R., Patrick, D. R., Dar, M. M. & Huang, P. S. (2007). Nat. Rev. Cancer, 7, 107–117. [PubMed]
  • Rigaku (2004). CrystalClear Version 1.36. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Shi, D.-Q., Rong, L.-C., Wang, J.-X., Wang, X.-S., Tu, S.-J. & Hu, H.-W. (2004). Chem. J. Chin. Univ.25, 2051–2053.
  • Shi, D.-Q., Wang, X.-S., Tu, S.-J. & Hu, H.-W. (2003). Chin. J. Struct. Chem.22, 581–584.
  • Yu, M. J., McCowan, J. R., Mason, N. R., Deeter, J. B. & Mendelsohn, L. G. (1992). J. Med. Chem.35, 2534–2542. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography