PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m359.
Published online 2008 January 16. doi:  10.1107/S1600536808000767
PMCID: PMC2960293

Chlorido{5-chloro-2-[2-(methyl­sulfanyl)phenyl­diazen­yl]phenyl}­platinum(II)

Abstract

The title compound, [Pt(C13H10ClN2S)Cl], contains a Pt atom tetra­coordinated by a benzene C, a diazene N, a Cl and an S atom in an approximately square-planar geometry. The mol­ecules dimerize through a nonbonded S(...)S inter­action [S(...)S = 3.523 (18) Å]. There are no hydrogen bonds and the crystal packing is stabilized by four inter­molecular π–π inter­actions; the centroid–centroid distances are 3.804 (3), 3.638 (3), 3.804 (3) and 3.638 (3) Å, and the corresponding perpendicular distances are 3.369, 3.448, 3.406 and 3.466 Å.

Related literature

For related literature, see: Bagchi et al. (2007 [triangle]); Chattopadhyay et al. (1991 [triangle]); Dupont et al. (2005 [triangle]); Buraway & Vellins (1954 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m359-scheme1.jpg

Experimental

Crystal data

  • [Pt(C13H10ClN2S)Cl]
  • M r = 492.28
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m359-efi1.jpg
  • a = 7.424 (2) Å
  • b = 8.777 (3) Å
  • c = 11.069 (3) Å
  • α = 105.428 (4)°
  • β = 91.798 (4)°
  • γ = 96.641 (4)°
  • V = 689.1 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 10.70 mm−1
  • T = 273 (2) K
  • 0.42 × 0.28 × 0.19 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.035, T max = 0.134
  • 6783 measured reflections
  • 2544 independent reflections
  • 2472 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018
  • wR(F 2) = 0.043
  • S = 1.05
  • 2544 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.89 e Å−3
  • Δρmin = −0.89 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808000767/at2531sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000767/at2531Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Department of Science and Technology, India (project No. SR/S1/IC-04/2007), for funding and CSIR for a fellowship to VB. The single-crystal X-ray diffractometer facility provided by IITD is gratefully acknowledged.

supplementary crystallographic information

Comment

Cyclometallated compounds have numerous applications (Dupont et al., 2005) in organic synthesis, catalysis and metallomesogen chemistry. Although a number of cycloplatinated complexes have been reported in the literature, report of platinum complexes with sulfur as auxiliary donor and the existence of C–Pt bond are sparse. Herein we report the crystal structure of (I) having such features.

The molecular structure of the title compound, (I), is shown in Fig. 1, with the atom numbering scheme. The platinum atom along with donor set of four atoms lie almost in one plane. Selected bond lengths, bond angles are listed in Table 1. The packing arrangement of (I) is shown in Fig. 2. The N?N bond length is similar of other cycloplatinated azoarenes (Chattopadhyay et al., 1991).

The metal carbon bond length, 1.986 (3) Å, is slightly lower than the reported values of other ortho-metallated azoarenes (Chattopadhyay et al., 1991). The molecules are found to dimerize through non-bonded S···S interaction; having S···Si [symmetry code: (i) -x, 2 - y, -z] distance of 3.523 (18) Å (Bagchi et al. 2007) (Fig.3).The crystal packing is stabilized by four inter-molecular π-π interactions; the Cg3Cg4ii, Cg3Cg4iii, Cg4Cg3ii, Cg4Cg3iii, [symmetry codes: (ii) -x, 1 - y, -z, (iii) 1 - x, 1 - y, -z. Cg3 and Cg4 are the centroids of C1—C6 and C7—C12 rings, respectively] distances are 3.638 (3), 3.804 (3), 3.638 (3) and 3.804 (3) Å, respectively; the corresponding perpendicular distances are 3.448, 3.369, 3.466 and 3.406 Å, respectively (Fig. 4).

Experimental

2-(Methylsulfanyl)diazenyl-4-chlorobenzene was prepared by coupling 2-(methylsulfanyl)aniline with 4-nitroso-chlorobenzene. The ligand thus obtained was reacted with K2PtCl4 following a reported method (Buraway & Vellins, 1954). The product was purified by column chromatographic technique using silica gel column and methanol and dichloromethane (1:9 v/v) mixture as eluent. The solvent was evaporated in vacuum to obtain the pure product (78.3%). Suitable crystals of (I) were grown from a dichloromethane–hexane solution by slow evaporation.

Refinement

H atoms were included at calculated positions as riding atoms with C—H set to 0.93 Å for (aromatic) and 0.96 Å for (CH3) H atoms, with Uiso(H) = 1.2Ueq(C) [1.5Ueq for methyl group].

Figures

Fig. 1.
The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
The molecular arrangement of (I) in the unitcell.
Fig. 3.
The intermolecular S···S interaction for (I), indicated by dotted line [symmetry code: (i) -x, 2 - y, -z].
Fig. 4.
The intermolecular π—π interactions for (I), indicated by the dotted lines. [Symmetry codes: (ii) -x, 1 - y, -z, (iii) 1 - x, 1 - y, -z]. Cg3 and Cg4 are centroids of C1—C6 and C7—C12 rings, respectively.

Crystal data

[Pt(C13H10ClN2S)Cl]Z = 2
Mr = 492.28F000 = 460.0
Triclinic, P1Dx = 2.372 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.424 (2) ÅCell parameters from 2472 reflections
b = 8.777 (3) Åθ = 1.0–25.5º
c = 11.069 (3) ŵ = 10.70 mm1
α = 105.428 (4)ºT = 273 (2) K
β = 91.798 (4)ºBlock, pink
γ = 96.641 (4)º0.42 × 0.28 × 0.19 mm
V = 689.1 (4) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2544 independent reflections
Radiation source: fine-focus sealed tube2472 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.025
T = 273(2) Kθmax = 25.5º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.035, Tmax = 0.134k = −10→10
6783 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.043  w = 1/[σ2(Fo2) + (0.0209P)2 + 0.4377P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2544 reflectionsΔρmax = 0.89 e Å3
173 parametersΔρmin = −0.89 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C80.3562 (5)0.2238 (4)−0.1887 (4)0.0399 (8)
H80.36660.1521−0.14110.048*
C90.3852 (5)0.1810 (4)−0.3149 (4)0.0432 (9)
H90.41440.0802−0.35420.052*
Pt10.216802 (16)0.685427 (14)−0.091569 (11)0.03068 (6)
Cl20.40740 (17)0.23872 (14)−0.54110 (10)0.0599 (3)
Cl10.19823 (17)0.81788 (12)−0.24323 (10)0.0529 (3)
N10.2327 (4)0.5583 (4)0.0285 (3)0.0311 (6)
N20.2763 (4)0.4162 (3)−0.0062 (3)0.0356 (6)
C10.1910 (4)0.6209 (4)0.1559 (3)0.0322 (7)
C70.3111 (4)0.3755 (4)−0.1328 (3)0.0329 (7)
C100.3698 (5)0.2924 (4)−0.3816 (3)0.0390 (8)
C20.1378 (5)0.7727 (4)0.1893 (3)0.0347 (7)
C110.3267 (5)0.4437 (4)−0.3279 (3)0.0370 (8)
H110.31860.5149−0.37630.044*
C50.1648 (6)0.6038 (5)0.3660 (4)0.0480 (10)
H50.17150.54670.42540.058*
S10.10822 (13)0.87598 (11)0.07262 (8)0.0362 (2)
C120.2953 (5)0.4887 (4)−0.2005 (3)0.0326 (7)
C40.1152 (6)0.7564 (6)0.4010 (4)0.0515 (10)
H40.09240.80210.48410.062*
C60.2041 (5)0.5359 (5)0.2441 (4)0.0412 (8)
H60.23890.43420.22130.049*
C30.0998 (5)0.8407 (5)0.3127 (4)0.0454 (9)
H30.06430.94210.33580.054*
C130.2718 (6)1.0531 (5)0.1290 (4)0.0519 (10)
H13A0.23991.11400.20930.078*
H13B0.27141.11640.07040.078*
H13C0.39081.02270.13710.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C80.041 (2)0.0332 (19)0.048 (2)0.0096 (15)0.0056 (17)0.0131 (17)
C90.043 (2)0.0313 (19)0.052 (2)0.0099 (15)0.0065 (18)0.0042 (17)
Pt10.03822 (9)0.02666 (9)0.02684 (9)0.00541 (6)0.00145 (6)0.00626 (6)
Cl20.0827 (8)0.0549 (6)0.0349 (5)0.0134 (6)0.0109 (5)−0.0030 (5)
Cl10.0879 (8)0.0395 (5)0.0383 (5)0.0191 (5)0.0114 (5)0.0174 (4)
N10.0315 (15)0.0336 (16)0.0279 (15)0.0057 (12)0.0014 (12)0.0074 (12)
N20.0366 (15)0.0343 (16)0.0374 (17)0.0074 (12)0.0041 (13)0.0112 (13)
C10.0314 (17)0.0361 (18)0.0274 (17)0.0024 (14)−0.0006 (13)0.0069 (14)
C70.0318 (17)0.0315 (18)0.0350 (19)0.0042 (14)0.0018 (14)0.0082 (15)
C100.0388 (19)0.040 (2)0.0324 (19)0.0039 (15)0.0053 (15)0.0006 (16)
C20.0356 (18)0.0370 (19)0.0294 (18)0.0031 (14)0.0004 (14)0.0065 (15)
C110.044 (2)0.0319 (18)0.0340 (19)0.0031 (15)0.0027 (16)0.0081 (15)
C50.052 (2)0.063 (3)0.033 (2)0.006 (2)−0.0015 (17)0.0205 (19)
S10.0434 (5)0.0343 (5)0.0302 (5)0.0113 (4)0.0005 (4)0.0054 (4)
C120.0334 (17)0.0279 (17)0.0330 (19)0.0020 (13)−0.0012 (14)0.0033 (14)
C40.049 (2)0.073 (3)0.031 (2)0.008 (2)0.0055 (17)0.011 (2)
C60.043 (2)0.046 (2)0.037 (2)0.0049 (16)−0.0015 (16)0.0164 (17)
C30.048 (2)0.053 (2)0.034 (2)0.0100 (18)0.0056 (17)0.0071 (18)
C130.070 (3)0.034 (2)0.047 (2)0.0003 (19)−0.005 (2)0.0070 (18)

Geometric parameters (Å, °)

C8—C91.378 (6)C10—C111.382 (5)
C8—C71.394 (5)C2—C31.390 (5)
C8—H80.9300C2—S11.785 (4)
C9—C101.385 (6)C11—C121.395 (5)
C9—H90.9300C11—H110.9300
Pt1—N11.959 (3)C5—C61.378 (6)
Pt1—C121.986 (3)C5—C41.388 (6)
Pt1—Cl12.2911 (11)C5—H50.9300
Pt1—S12.3529 (10)S1—C131.811 (4)
Cl2—C101.742 (4)C4—C31.383 (6)
N1—N21.286 (4)C4—H40.9300
N1—C11.429 (4)C6—H60.9300
N2—C71.391 (5)C3—H30.9300
C1—C61.385 (5)C13—H13A0.9600
C1—C21.391 (5)C13—H13B0.9600
C7—C121.407 (5)C13—H13C0.9600
C9—C8—C7119.5 (4)C10—C11—C12119.4 (3)
C9—C8—H8120.3C10—C11—H11120.3
C7—C8—H8120.3C12—C11—H11120.3
C8—C9—C10118.2 (3)C6—C5—C4120.7 (4)
C8—C9—H9120.9C6—C5—H5119.7
C10—C9—H9120.9C4—C5—H5119.7
N1—Pt1—C1279.26 (14)C2—S1—C13102.24 (19)
N1—Pt1—Cl1175.94 (9)C2—S1—Pt195.61 (12)
C12—Pt1—Cl196.84 (11)C13—S1—Pt1111.80 (16)
N1—Pt1—S186.25 (9)C11—C12—C7117.3 (3)
C12—Pt1—S1165.07 (11)C11—C12—Pt1131.9 (3)
Cl1—Pt1—S197.57 (4)C7—C12—Pt1110.7 (3)
N2—N1—C1118.9 (3)C3—C4—C5120.2 (4)
N2—N1—Pt1120.9 (2)C3—C4—H4119.9
C1—N1—Pt1120.2 (2)C5—C4—H4119.9
N1—N2—C7110.8 (3)C5—C6—C1119.2 (4)
C6—C1—C2120.7 (3)C5—C6—H6120.4
C6—C1—N1121.9 (3)C1—C6—H6120.4
C2—C1—N1117.4 (3)C4—C3—C2119.5 (4)
N2—C7—C8119.2 (3)C4—C3—H3120.2
N2—C7—C12118.3 (3)C2—C3—H3120.2
C8—C7—C12122.4 (3)S1—C13—H13A109.5
C11—C10—C9123.3 (3)S1—C13—H13B109.5
C11—C10—Cl2118.5 (3)H13A—C13—H13B109.5
C9—C10—Cl2118.2 (3)S1—C13—H13C109.5
C3—C2—C1119.7 (3)H13A—C13—H13C109.5
C3—C2—S1120.1 (3)H13B—C13—H13C109.5
C1—C2—S1120.1 (3)
C7—C8—C9—C100.6 (6)C1—C2—S1—Pt1−6.0 (3)
C12—Pt1—N1—N2−1.8 (3)N1—Pt1—S1—C24.51 (14)
S1—Pt1—N1—N2174.6 (3)C12—Pt1—S1—C218.4 (4)
C12—Pt1—N1—C1179.9 (3)Cl1—Pt1—S1—C2−176.89 (12)
S1—Pt1—N1—C1−3.7 (2)N1—Pt1—S1—C13110.10 (18)
C1—N1—N2—C7179.6 (3)C12—Pt1—S1—C13124.0 (4)
Pt1—N1—N2—C71.4 (4)Cl1—Pt1—S1—C13−71.30 (16)
N2—N1—C1—C63.0 (5)C10—C11—C12—C70.5 (5)
Pt1—N1—C1—C6−178.7 (3)C10—C11—C12—Pt1−175.7 (3)
N2—N1—C1—C2−177.6 (3)N2—C7—C12—C11−178.5 (3)
Pt1—N1—C1—C20.6 (4)C8—C7—C12—C110.1 (5)
N1—N2—C7—C8−178.4 (3)N2—C7—C12—Pt1−1.6 (4)
N1—N2—C7—C120.2 (4)C8—C7—C12—Pt1177.0 (3)
C9—C8—C7—N2178.0 (3)N1—Pt1—C12—C11178.0 (4)
C9—C8—C7—C12−0.6 (5)Cl1—Pt1—C12—C11−0.8 (3)
C8—C9—C10—C110.0 (6)S1—Pt1—C12—C11163.9 (2)
C8—C9—C10—Cl2179.7 (3)N1—Pt1—C12—C71.7 (2)
C6—C1—C2—C30.9 (5)Cl1—Pt1—C12—C7−177.2 (2)
N1—C1—C2—C3−178.5 (3)S1—Pt1—C12—C7−12.4 (6)
C6—C1—C2—S1−176.2 (3)C6—C5—C4—C31.8 (6)
N1—C1—C2—S14.4 (4)C4—C5—C6—C1−1.0 (6)
C9—C10—C11—C12−0.5 (6)C2—C1—C6—C5−0.4 (5)
Cl2—C10—C11—C12179.7 (3)N1—C1—C6—C5179.0 (3)
C3—C2—S1—C1363.1 (4)C5—C4—C3—C2−1.3 (6)
C1—C2—S1—C13−119.8 (3)C1—C2—C3—C4−0.1 (6)
C3—C2—S1—Pt1176.9 (3)S1—C2—C3—C4177.0 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2531).

References

  • Bagchi, V., Das, P. & Bandyopadhyay, D. (2007). Acta Cryst. E63, m1704.
  • Bruker (1998). SMART Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2000). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Buraway, A. & Vellins, C. E. (1954). J. Chem. Soc. pp. 90–95.
  • Chattopadhyay, S., Sinha, C., Basu, P. & Chakravorty, A. (1991). Organometallics, 10, 1135–1139.
  • Dupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev.105, 2527–2571. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography