PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m358.
Published online 2008 January 16. doi:  10.1107/S1600536808000858
PMCID: PMC2960290

[Bis(2-pyridylmeth­yl)amine]dichloridomercury(II)

Abstract

The Hg atom in the title complex, [HgCl2(C12H13N3)], adopts a square-pyramidal geometry, being ligated by three N atoms of the tridentate bis­(2-pyridylmeth­yl)amine ligand and two Cl atoms, with one of the latter occupying the apical position. Disorder is noted in the amine portion of the ligand and this was modelled over two sites, with the major component having a site-occupancy factor of 0.794 (14).

Related literature

For general background, see: Ojida et al. (2004 [triangle]); Kirin et al. (2005 [triangle]); Storr et al. (2005 [triangle]); Tamamura et al. (2006 [triangle]); Kim et al. (2007 [triangle]); Lee et al. (2007 [triangle]). For related literature, see: Addison et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m358-scheme1.jpg

Experimental

Crystal data

  • [HgCl2(C12H13N3)]
  • M r = 470.74
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m358-efi1.jpg
  • a = 8.4083 (6) Å
  • b = 12.8278 (11) Å
  • c = 13.3457 (12) Å
  • β = 90.462 (2)°
  • V = 1439.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 11.05 mm−1
  • T = 295 (2) K
  • 0.18 × 0.15 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.143, T max = 0.185
  • 15603 measured reflections
  • 3580 independent reflections
  • 2547 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.061
  • S = 1.01
  • 3580 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 1.22 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000858/tk2241sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000858/tk2241Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Ministry of Information and Communication, Korea, under the Information Technology Research Center (ITRC) Support Program. X-ray data were collected at the Center for Research Facilities in Chungnam National University.

supplementary crystallographic information

Comment

Transition metal complexes with bis(2-pyridylmethyl)amine (dpa) or substituted-dpa ligands continue to be of interest in many fields of chemistry (Kirin et al., 2005; Storr et al., 2005; Tamamura et al., 2006). Recently, we reported Cu(II) (Lee et al., 2007) and Zn(II) (Kim et al., 2007) halide complexes with the dpa ligand, and Zn(dpa)Cl2 was proposed as a blue fluorescent material. In this work, as an extension of a study on fluorescent chemosensors (Ojida et al., 2004), we prepared a Hg(II) complex of dpa, Hg(dpa)Cl2 (I), and its structure and properties were investigated. The Hg(II) atom is 5-coordinated by the three N atoms of the tridentate di(picolyl)amine ligand and two Cl atoms. The coordination geometry is based on a square pyramid with the basal plane defined by three N atoms and one Cl, with the other Cl atom occupying the apical position. The calculated trigonality index, τ = 0.03, indicates that the Hg atom is in a square pyramidal geometry (Addison et al., 1984). Hg(dpa)Cl2 exhibits an intense blue emission at 425 nm in DMF solution upon excitation at 400 nm.

Experimental

All of the reagents and solvents were purchased from either Aldrich and used without further purification. A mixture of mercuric chloride (1.35 g, 5 mmol) and bis(2-pyridylmethyl)amine (0.99 g, 5 mmol) in methanol (20 ml) was stirred for 8 h at room temperature under a nitrogen atmosphere. The precipitates were filtered off and recrystallized from methanol in a 63% yield. 1H-NMR for dpa in (I) (d6-DMSO, p.p.m.): δ: 8.51 (d, 2H), 7.96 (t, 2H), 7.52 (m, 4H), 4.98 (s, 1H), 4.08 (s, 4H).

Refinement

The C and N-bound H atoms were included in the riding model approximation with C—H = 0.93–0.97 Å and N—H = 0.91 Å, and with Uiso(H) = 1.2Ueq(C and N). Disorder was noted in the structure and this modelled so that two sites were resolved for the N8—H atoms. From refinement, the major component of the disorder had a site occupancy factor = 0.794 (14). The maximum and minimum residual electron denisty peaks were located 0.85 and 0.78 Å, respectively, from the Hg atom.

Figures

Fig. 1.
Molecular structure of (I), showing the atom-numbering scheme and 30% probability ellipsoids. Only the major component of the disordered atoms is shown for clarity.

Crystal data

[HgCl2(C12H13N3)]F000 = 880
Mr = 470.74Dx = 2.172 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4387 reflections
a = 8.4083 (6) Åθ = 2.2–24.5º
b = 12.8278 (11) ŵ = 11.05 mm1
c = 13.3457 (12) ÅT = 295 (2) K
β = 90.462 (2)ºBlock, orange
V = 1439.4 (2) Å30.18 × 0.15 × 0.15 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometerRint = 0.028
[var phi] and ω scansθmax = 28.3º
Absorption correction: multi-scan(SADABS; Bruker, 2002)θmin = 2.2º
Tmin = 0.143, Tmax = 0.185h = −11→11
15603 measured reflectionsk = −12→17
3580 independent reflectionsl = −17→17
2547 reflections with I > 2σ(I)

Refinement

Refinement on F2H-atom parameters constrained
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0268P)2 + 0.7364P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.027(Δ/σ)max = 0.002
wR(F2) = 0.061Δρmax = 1.22 e Å3
S = 1.02Δρmin = −0.47 e Å3
3580 reflectionsExtinction correction: none
173 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Hg0.87912 (2)0.305769 (14)0.873548 (12)0.06174 (8)
Cl11.04268 (15)0.36276 (12)0.73426 (9)0.0791 (3)
Cl20.63148 (16)0.21091 (10)0.83674 (11)0.0794 (4)
N11.0536 (5)0.1777 (3)0.9449 (3)0.0636 (10)
C21.1638 (6)0.1270 (4)0.8923 (4)0.0799 (14)
H21.17080.13990.82390.096*
C31.2665 (7)0.0573 (5)0.9348 (5)0.0911 (17)
H31.34250.02350.89630.109*
C41.2548 (7)0.0381 (5)1.0354 (6)0.0959 (18)
H41.3227−0.00931.06650.115*
C51.1423 (6)0.0898 (4)1.0893 (4)0.0792 (14)
H51.13320.07791.15780.095*
C61.0426 (5)0.1592 (3)1.0422 (3)0.0576 (10)
C70.9172 (6)0.2192 (4)1.0981 (4)0.0727 (13)
H7A0.8150.18471.09140.087*
H7B0.94470.22281.16880.087*
N80.9085 (9)0.3260 (5)1.0549 (3)0.0594 (19)0.794 (14)
H81.00330.3581.06710.071*0.794 (14)
N8A0.807 (3)0.2914 (15)1.0593 (11)0.048 (7)0.206 (14)
H8A0.71010.25991.06150.057*0.206 (14)
C90.7863 (6)0.3898 (4)1.0952 (3)0.0746 (14)
H9A0.82040.41611.16010.09*
H9B0.69180.34781.10530.09*
C100.7454 (5)0.4802 (4)1.0282 (3)0.0590 (11)
C110.6733 (5)0.5697 (4)1.0649 (4)0.0707 (13)
H110.65230.57631.13290.085*
C120.6337 (6)0.6482 (4)0.9995 (4)0.0766 (14)
H120.58420.70811.02290.092*
C130.6666 (6)0.6383 (4)0.9010 (4)0.0742 (13)
H130.64080.69120.8560.089*
C140.7391 (5)0.5482 (4)0.8685 (3)0.0669 (12)
H140.76220.54130.80070.08*
N150.7774 (4)0.4704 (3)0.9307 (2)0.0563 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg0.07430 (13)0.06556 (13)0.04548 (10)0.01047 (9)0.00744 (7)0.00080 (8)
Cl10.0815 (8)0.0984 (10)0.0575 (6)−0.0078 (7)0.0157 (6)0.0109 (6)
Cl20.0726 (8)0.0803 (9)0.0857 (9)−0.0067 (6)0.0138 (6)−0.0032 (6)
N10.061 (2)0.064 (2)0.066 (2)0.0019 (18)0.0042 (18)0.0070 (18)
C20.078 (3)0.077 (4)0.085 (3)0.010 (3)0.020 (3)−0.004 (3)
C30.074 (4)0.069 (4)0.130 (5)0.010 (3)0.010 (3)−0.020 (4)
C40.075 (4)0.072 (4)0.140 (6)0.014 (3)−0.019 (4)0.006 (4)
C50.077 (3)0.076 (3)0.084 (3)0.000 (3)−0.009 (3)0.017 (3)
C60.056 (3)0.053 (2)0.064 (3)−0.007 (2)−0.004 (2)0.008 (2)
C70.073 (3)0.086 (4)0.059 (3)0.001 (3)0.000 (2)0.017 (3)
N80.051 (4)0.067 (4)0.060 (3)−0.003 (3)0.004 (2)0.003 (2)
N8A0.046 (14)0.053 (12)0.045 (9)−0.007 (9)−0.002 (7)0.009 (7)
C90.089 (4)0.082 (4)0.053 (3)0.000 (3)0.011 (2)−0.003 (2)
C100.058 (3)0.063 (3)0.056 (2)−0.009 (2)0.0045 (19)−0.012 (2)
C110.068 (3)0.076 (3)0.068 (3)−0.005 (3)0.010 (2)−0.022 (3)
C120.058 (3)0.062 (3)0.109 (4)0.002 (2)−0.001 (3)−0.021 (3)
C130.068 (3)0.064 (3)0.090 (4)−0.003 (3)−0.003 (3)0.003 (3)
C140.074 (3)0.061 (3)0.066 (3)−0.006 (2)0.006 (2)−0.001 (2)
N150.060 (2)0.058 (2)0.0507 (19)−0.0047 (17)0.0061 (16)−0.0016 (16)

Geometric parameters (Å, °)

Hg—Cl12.4336 (12)C7—H7A0.97
Hg—Cl22.4579 (14)C7—H7B0.97
Hg—N12.394 (4)N8—C91.423 (7)
Hg—N82.445 (5)N8—H80.91
Hg—N152.405 (4)N8A—C91.362 (18)
Hg—N8A2.563 (17)N8A—H8A0.91
N1—C61.325 (6)C9—C101.503 (7)
N1—C21.336 (6)C9—H9A0.97
C2—C31.364 (7)C9—H9B0.97
C2—H20.93C10—N151.336 (5)
C3—C41.370 (8)C10—C111.389 (6)
C3—H30.93C11—C121.372 (7)
C4—C51.365 (8)C11—H110.93
C4—H40.93C12—C131.351 (7)
C5—C61.372 (6)C12—H120.93
C5—H50.93C13—C141.379 (7)
C6—C71.508 (7)C13—H130.93
C7—N8A1.407 (18)C14—N151.337 (6)
C7—N81.488 (7)C14—H140.93
Cl1—Hg—Cl2118.63 (5)H7A—C7—H7B108.4
N1—Hg—N867.82 (15)C9—N8—C7114.6 (5)
N1—Hg—N15133.99 (12)C9—N8—Hg111.6 (3)
N8—Hg—N1568.04 (14)C7—N8—Hg106.9 (3)
N1—Hg—Cl199.30 (10)C9—N8—H8107.8
N15—Hg—Cl1100.55 (9)C7—N8—H8107.8
Cl1—Hg—N8132.16 (19)Hg—N8—H8107.8
N1—Hg—Cl2104.77 (10)C9—N8A—C7124.5 (15)
N15—Hg—Cl2101.26 (9)C9—N8A—Hg107.8 (10)
N8—Hg—Cl2109.21 (19)C7—N8A—Hg104.1 (10)
N1—Hg—N8A73.5 (4)C9—N8A—H8A106.4
N15—Hg—N8A70.7 (4)C7—N8A—H8A106.4
Cl1—Hg—N8A154.1 (6)Hg—N8A—H8A106.4
N8—Hg—N8A22.0 (5)N8A—C9—C10122.3 (7)
Cl2—Hg—N8A87.2 (6)N8—C9—C10112.4 (4)
C6—N1—C2118.8 (4)N8A—C9—H9A126.8
C6—N1—Hg117.8 (3)N8—C9—H9A109.1
C2—N1—Hg123.4 (3)C10—C9—H9A109.1
N1—C2—C3122.7 (5)N8—C9—H9B109.1
N1—C2—H2118.6C10—C9—H9B109.1
C3—C2—H2118.6H9A—C9—H9B107.9
C2—C3—C4118.4 (5)N15—C10—C11120.9 (5)
C2—C3—H3120.8N15—C10—C9117.4 (4)
C4—C3—H3120.8C11—C10—C9121.7 (4)
C5—C4—C3119.1 (5)C12—C11—C10119.1 (5)
C5—C4—H4120.5C12—C11—H11120.5
C3—C4—H4120.5C10—C11—H11120.5
C4—C5—C6119.8 (5)C13—C12—C11120.0 (5)
C4—C5—H5120.1C13—C12—H12120
C6—C5—H5120.1C11—C12—H12120
N1—C6—C5121.3 (5)C12—C13—C14118.6 (5)
N1—C6—C7116.6 (4)C12—C13—H13120.7
C5—C6—C7122.1 (4)C14—C13—H13120.7
N8A—C7—C6127.9 (8)N15—C14—C13122.4 (4)
N8—C7—C6108.1 (4)N15—C14—H14118.8
N8—C7—H7A110.1C13—C14—H14118.8
C6—C7—H7A110.1C10—N15—C14119.0 (4)
N8A—C7—H7B118.6C10—N15—Hg117.8 (3)
N8—C7—H7B110.1C14—N15—Hg122.9 (3)
C6—C7—H7B110.1

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2241).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02) and SMART (Version 5.62). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kim, Y.-I., Lee, Y.-S., Seo, H.-J., Lee, J.-Y. & Kang, S. K. (2007). Acta Cryst. E63, m2810–m2811.
  • Kirin, S. I., Dübon, P., Weyhermüller, T., Bill, E. & Metgler-Nolte, N. (2005). Inorg. Chem.44, 5405–5415. [PubMed]
  • Lee, H.-W., Seo, H.-J., Kim, H.-J., Kang, S. K., Heo, J. Y. & Kim, Y.-I. (2007). Bull. Korean Chem. Soc.28, 855–858.
  • Ojida, A., Miti-oka, Y., Sada, K. & Hamachi, I. (2004). J. Am. Chem. Soc.126, 2454–2463. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Storr, T., Sugai, Y., Borta, C. A., Mikata, Y., Adam, M. J., Yano, S. & Orvig, C. (2005). Inorg. Chem.44, 2698–2705. [PubMed]
  • Tamamura, H., Ojida, A., Ogawa, T., Tsutsumi, H., Masuno, H., Nakashima, H., Yamamoto, N., Hamachi, I. & Fujii, N. (2006). J. Med. Chem.49, 3412–3415. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography