PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o370.
Published online 2008 January 4. doi:  10.1107/S1600536807066615
PMCID: PMC2960289

4,4-Bis(4-methyl­phenyl­sulfan­yl)-1,1-diphenyl-2-aza­buta-1,3-diene

Abstract

In the title compound, C29H25NS2, both the Cl atoms of the aza­diene precursor 4,4-dichloro-1,1-diphenyl-2-aza­buta-1,3-diene are replaced by two vicinal S-p-tolyl substituents attached to the terminal C atom of a π-conjugated 2-aza­butadiene array. The aza­diene chain is planar to within 0.01 Å. One of the phenyl rings seems to be slightly π-conjugated with the aza­diene core [dihedral angle 5.1 (2)°].

Related literature

Some related structures of alkoxo- (Jacquot et al., 2000 [triangle]), cyano- (Jacquot-Rousseau et al., 2002 [triangle]) and iPrS-substituted (Jacquot-Rousseau et al., 2005 [triangle]) 4,4-dichloro-1,1-diphenyl-2-aza­buta-1,3-dienes (Jacquot et al., 1999 [triangle]) have been reported. For related literature, see: Tanimoto et al. (1976 [triangle]); Truce & Boudakian (1956 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o370-scheme1.jpg

Experimental

Crystal data

  • C29H25NS2
  • M r = 451.66
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o370-efi1.jpg
  • a = 6.9340 (10) Å
  • b = 12.3009 (2) Å
  • c = 14.4247 (3) Å
  • α = 101.7371 (8)°
  • β = 98.2522 (7)°
  • γ = 93.0400 (10)°
  • V = 1187.90 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 120 (2) K
  • 0.2 × 0.12 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 7710 measured reflections
  • 5329 independent reflections
  • 4695 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.089
  • S = 1.04
  • 5329 reflections
  • 317 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: KappaCCD Server Software (Nonius, 1997 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066615/gw2031sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066615/gw2031Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

CNRS is acknowledged for financial support

supplementary crystallographic information

Comment

The investigations of Truce and Boudakian on the reactivity of 1,1-dichloroethylene (1) towards an excess of sodium p-toluenethiolate have shown that this reaction affords exclusively cis-1,2-bis-(p-tolylmercapto) ethane (2). The intermediacy of an alkyne species ArSCCH has been suggested to rationalize this interesting rearrangement reaction which implies some addition–elimination sequences (Truce & Boudakian, 1956). Another research group has later confirmed these findings (Tanimoto et al., 1976) (Fig. 2). In the context of our interest in developing novel π-conjugated dithioether compounds as ligands for coordination chemistry, we have recently reported on the synthesis and crystal structure of [(i-PrS)2C=C(H)—N=CPh2] (4a), obtained by reaction of an excess of sodium i-propylthiolate with 4,4-dichloro-1,1-diphenyl-2-azabuta-1,3-diene (3) in DMF as solvent (Jacquot-Rousseau et al., 2005). In the light of the results mentioned above, we were intrigued whether the reaction of (3) (Jacquot et al., 1999) with sodium p-toluenethiolate would lead to [(p-tolylS)2C=C(H)—N=CPh2] (4 b) or to an rearranged product bearing the two –S-p-tolyl substituents on two different carbon atoms, similar to the case of olefin (2) (Fig. 3).

The molecular structure of (4 b) is shown in Fig. 1. The transoid conformation of the azabutadiene chain found in precursor (3) and in the S-i-propyl derivative (4a) is also observed in the crystal structure of (4 b). In contrast to compound (2), both the S-p-tolyl substituents are attached to the same C(3) atom.

One may expect that one of the two phenyl groups bound to C(1) makes part of the phenyl/azadiene chain π-conjugation. In fact, a dihedral angle between C10–C15 phenyl plane and that of azadiene chain C1—N—C2—C3 is equal only to 5.1 (2)°. Note that these dihedral angles amount to 28.7 (1)° in precursor (3) and 38.8 (3)° in (4a). An obvious question arises: the reported values of dihedral angles are due to the electronic structures of compounds (3) and (4) or to the packing in the crystals? This problem requires some calculations on the electronic structure of (4 b) and will be separately treated elsewhere.

Experimental

4,4-Dichloro-1,1-diphenyl-2-azabuta-1,3-diene (3) (1.1 mmol) was stirred with an excess of 4-toluenethiolate (8 mmol) in dry DMF (10 ml). The reaction mixture was kept at room temperature for 8 h, then poured into water (100 ml) and extracted with diethyl ether (150 ml). The organic solution was washed three times with water, dried over anhydrous sodium sulfate and evaporated. The crude residue was recristallized from ethanol (75% yield). 1H NMR: δ = 2.30 p.p.m. (s, 3H, Ar—CH3); 2.33 p.p.m. (s, 3H, Ar—CH3);), 6.99–7.02 p.p.m. (m, 8H, phenyl) 7.10 p.p.m. (s, 1H, C=CH), 7.23–7.28 p.p.m. (m, 10H, Ar—H).

Refinement

The hydrogen H(2) bound to the carbon C(2) of the azadienic chain as well as those of p-methyl groups (C22 and C29) were located from difference Fourier map and isotropically refined. Other aromatic H atoms were included in calculated positions and treated in a riding model with isotropic displacement parameters set to 1.2 times those of carbon atoms bearing them.

Figures

Fig. 1.
View of (4 b) with ellipsoids at the 30% probability level.
Fig. 2.
p-S-tolyl substitution on 1,1-dichloroethylene.
Fig. 3.
p-S-tolyl substitution on an azadienic chain.

Crystal data

C29H25NS2Z = 2
Mr = 451.66F000 = 476
Triclinic, P1Dx = 1.263 Mg m3
Hall symbol: -P 1Melting point: 382 K
a = 6.9340 (10) ÅMo Kα radiation λ = 0.71073 Å
b = 12.3009 (2) ÅCell parameters from 3954 reflections
c = 14.4247 (3) Åθ = 1.0–27.5º
α = 101.7371 (8)ºµ = 0.24 mm1
β = 98.2522 (7)ºT = 120 (2) K
γ = 93.0400 (10)ºIrregular, yellow
V = 1187.90 (4) Å30.2 × 0.12 × 0.08 mm

Data collection

Nonius KappaCCD diffractometer4695 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Monochromator: graphiteθmax = 27.4º
T = 120(2) Kθmin = 1.5º
CCD scansh = −8→8
Absorption correction: nonek = −12→15
7710 measured reflectionsl = −18→18
5329 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089  w = 1/[σ2(Fo2) + (0.0329P)2 + 0.5208P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5329 reflectionsΔρmax = 0.27 e Å3
317 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.22781 (5)0.37867 (3)0.35024 (2)0.02290 (9)
S20.43297 (4)0.52776 (3)0.23783 (2)0.02161 (9)
N0.48657 (16)0.21771 (9)0.26950 (8)0.0221 (2)
C10.58163 (18)0.13424 (11)0.23639 (9)0.0204 (3)
C20.50043 (19)0.31661 (11)0.23787 (10)0.0227 (3)
C30.39300 (18)0.40002 (11)0.27163 (9)0.0200 (3)
C40.71038 (19)0.13495 (10)0.16171 (9)0.0206 (3)
C50.6304 (2)0.12895 (14)0.06658 (11)0.0328 (3)
H50.49530.12380.04890.039*
C60.7506 (3)0.13066 (16)−0.00219 (12)0.0415 (4)
H60.69600.1270−0.06560.050*
C70.9508 (2)0.13778 (14)0.02340 (12)0.0364 (4)
H71.03120.1378−0.02300.044*
C81.0317 (2)0.14488 (13)0.11728 (12)0.0350 (3)
H81.16700.15060.13450.042*
C90.9128 (2)0.14354 (12)0.18644 (11)0.0287 (3)
H90.96860.14840.24990.034*
C100.56071 (18)0.03303 (11)0.27658 (9)0.0207 (3)
C110.6700 (2)−0.05758 (11)0.25308 (10)0.0250 (3)
H110.7553−0.05680.20890.030*
C120.6528 (2)−0.14933 (12)0.29507 (11)0.0293 (3)
H120.7284−0.20870.27990.035*
C130.5238 (2)−0.15238 (12)0.35923 (11)0.0285 (3)
H130.5126−0.21360.38740.034*
C140.4112 (2)−0.06400 (13)0.38151 (12)0.0322 (3)
H140.3228−0.06640.42400.039*
C150.4296 (2)0.02781 (12)0.34092 (11)0.0290 (3)
H150.35370.08690.35660.035*
C160.19592 (18)0.55484 (11)0.18701 (9)0.0200 (3)
C170.05190 (19)0.47143 (11)0.13858 (10)0.0231 (3)
H170.07440.39690.13440.028*
C18−0.1256 (2)0.50030 (12)0.09652 (10)0.0258 (3)
H18−0.22220.44430.06520.031*
C19−0.1623 (2)0.61123 (12)0.10010 (10)0.0249 (3)
C20−0.0167 (2)0.69289 (12)0.14901 (10)0.0269 (3)
H20−0.03870.76750.15280.032*
C210.1609 (2)0.66593 (11)0.19237 (10)0.0255 (3)
H210.25630.72210.22490.031*
C22−0.3522 (2)0.64249 (15)0.05100 (12)0.0328 (3)
C230.16434 (19)0.51460 (10)0.39797 (9)0.0195 (3)
C24−0.02989 (19)0.53814 (11)0.38031 (9)0.0217 (3)
H24−0.12230.48480.34080.026*
C25−0.08547 (19)0.64104 (11)0.42158 (10)0.0233 (3)
H25−0.21580.65590.40980.028*
C260.0502 (2)0.72288 (11)0.48054 (9)0.0222 (3)
C270.2438 (2)0.69758 (11)0.49862 (9)0.0231 (3)
H270.33620.75090.53830.028*
C280.30109 (19)0.59443 (11)0.45858 (9)0.0218 (3)
H280.43050.57860.47210.026*
C29−0.0105 (3)0.83537 (13)0.52391 (12)0.0316 (3)
H20.587 (2)0.3271 (13)0.1916 (11)0.023 (4)*
H221−0.460 (3)0.6112 (18)0.0711 (16)0.060 (6)*
H222−0.370 (3)0.6152 (19)−0.0180 (18)0.065 (7)*
H223−0.357 (3)0.722 (2)0.0618 (17)0.075 (7)*
H291−0.049 (3)0.8755 (17)0.4753 (15)0.050 (5)*
H2920.094 (3)0.8815 (18)0.5682 (15)0.055 (6)*
H293−0.120 (3)0.8270 (19)0.5548 (16)0.066 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.02781 (18)0.01708 (16)0.02706 (18)0.00498 (12)0.01078 (13)0.00695 (13)
S20.01964 (16)0.02080 (17)0.02704 (18)0.00391 (12)0.00537 (12)0.00951 (13)
N0.0233 (5)0.0201 (5)0.0235 (6)0.0061 (4)0.0038 (4)0.0045 (4)
C10.0199 (6)0.0198 (6)0.0200 (6)0.0040 (5)0.0010 (5)0.0021 (5)
C20.0229 (6)0.0226 (6)0.0235 (7)0.0053 (5)0.0042 (5)0.0059 (5)
C30.0207 (6)0.0193 (6)0.0206 (6)0.0035 (5)0.0028 (5)0.0056 (5)
C40.0235 (6)0.0162 (6)0.0228 (6)0.0048 (5)0.0053 (5)0.0037 (5)
C50.0273 (7)0.0471 (9)0.0257 (7)0.0121 (6)0.0035 (6)0.0095 (7)
C60.0454 (9)0.0584 (11)0.0255 (8)0.0162 (8)0.0095 (7)0.0144 (7)
C70.0398 (9)0.0389 (9)0.0375 (9)0.0084 (7)0.0209 (7)0.0126 (7)
C80.0250 (7)0.0377 (8)0.0433 (9)−0.0011 (6)0.0105 (6)0.0080 (7)
C90.0258 (7)0.0311 (7)0.0268 (7)−0.0012 (6)0.0014 (6)0.0035 (6)
C100.0217 (6)0.0198 (6)0.0197 (6)0.0033 (5)0.0022 (5)0.0023 (5)
C110.0285 (7)0.0229 (7)0.0259 (7)0.0064 (5)0.0090 (5)0.0056 (5)
C120.0346 (8)0.0218 (7)0.0345 (8)0.0089 (6)0.0100 (6)0.0077 (6)
C130.0342 (7)0.0225 (7)0.0306 (8)0.0016 (6)0.0057 (6)0.0095 (6)
C140.0349 (8)0.0300 (8)0.0360 (8)0.0042 (6)0.0166 (6)0.0093 (6)
C150.0305 (7)0.0251 (7)0.0351 (8)0.0092 (6)0.0137 (6)0.0070 (6)
C160.0212 (6)0.0232 (6)0.0190 (6)0.0062 (5)0.0068 (5)0.0087 (5)
C170.0270 (7)0.0213 (6)0.0227 (7)0.0051 (5)0.0055 (5)0.0064 (5)
C180.0252 (7)0.0292 (7)0.0233 (7)0.0024 (5)0.0025 (5)0.0072 (6)
C190.0240 (7)0.0330 (7)0.0224 (7)0.0093 (5)0.0078 (5)0.0123 (6)
C200.0304 (7)0.0232 (7)0.0320 (8)0.0095 (5)0.0087 (6)0.0131 (6)
C210.0260 (7)0.0218 (7)0.0300 (7)0.0026 (5)0.0052 (6)0.0079 (5)
C220.0273 (8)0.0437 (9)0.0318 (8)0.0108 (7)0.0044 (6)0.0166 (7)
C230.0243 (6)0.0185 (6)0.0183 (6)0.0044 (5)0.0066 (5)0.0070 (5)
C240.0220 (6)0.0224 (6)0.0209 (6)0.0011 (5)0.0037 (5)0.0049 (5)
C250.0212 (6)0.0270 (7)0.0244 (7)0.0069 (5)0.0068 (5)0.0084 (5)
C260.0287 (7)0.0217 (6)0.0188 (6)0.0058 (5)0.0088 (5)0.0057 (5)
C270.0269 (7)0.0222 (6)0.0196 (6)0.0000 (5)0.0025 (5)0.0047 (5)
C280.0205 (6)0.0243 (6)0.0226 (6)0.0040 (5)0.0031 (5)0.0092 (5)
C290.0381 (8)0.0249 (7)0.0323 (8)0.0083 (6)0.0112 (7)0.0021 (6)

Geometric parameters (Å, °)

S1—C31.7689 (13)C14—H140.9300
S1—C231.7776 (13)C15—H150.9300
S2—C31.7572 (13)C16—C211.3892 (19)
S2—C161.7781 (13)C16—C171.3919 (19)
N—C11.2959 (17)C17—C181.3890 (19)
N—C21.3869 (17)C17—H170.9300
C1—C101.4851 (18)C18—C191.393 (2)
C1—C41.4955 (18)C18—H180.9300
C2—C31.3515 (18)C19—C201.388 (2)
C2—H20.983 (15)C19—C221.5098 (19)
C4—C91.3904 (19)C20—C211.3873 (19)
C4—C51.3902 (19)C20—H200.9300
C5—C61.387 (2)C21—H210.9300
C5—H50.9300C22—H2210.93 (2)
C6—C71.378 (2)C22—H2220.97 (2)
C6—H60.9300C22—H2230.96 (3)
C7—C81.373 (2)C23—C241.3912 (18)
C7—H70.9300C23—C281.3936 (18)
C8—C91.385 (2)C24—C251.3843 (19)
C8—H80.9300C24—H240.9300
C9—H90.9300C25—C261.3941 (19)
C10—C111.3934 (18)C25—H250.9300
C10—C151.3974 (19)C26—C271.3942 (19)
C11—C121.3927 (19)C26—C291.5062 (19)
C11—H110.9300C27—C281.3864 (19)
C12—C131.381 (2)C27—H270.9300
C12—H120.9300C28—H280.9300
C13—C141.384 (2)C29—H2910.95 (2)
C13—H130.9300C29—H2920.97 (2)
C14—C151.382 (2)C29—H2930.95 (2)
C3—S1—C23104.31 (6)C21—C16—C17119.68 (12)
C3—S2—C16103.68 (6)C21—C16—S2116.76 (10)
C1—N—C2121.26 (12)C17—C16—S2123.46 (10)
N—C1—C10117.10 (12)C18—C17—C16119.57 (12)
N—C1—C4123.91 (12)C18—C17—H17120.2
C10—C1—C4118.98 (11)C16—C17—H17120.2
C3—C2—N119.27 (12)C17—C18—C19121.53 (13)
C3—C2—H2119.6 (9)C17—C18—H18119.2
N—C2—H2121.2 (9)C19—C18—H18119.2
C2—C3—S2117.32 (10)C20—C19—C18117.82 (12)
C2—C3—S1119.54 (10)C20—C19—C22120.64 (13)
S2—C3—S1123.10 (8)C18—C19—C22121.53 (14)
C9—C4—C5118.69 (13)C21—C20—C19121.59 (13)
C9—C4—C1120.58 (12)C21—C20—H20119.2
C5—C4—C1120.73 (12)C19—C20—H20119.2
C6—C5—C4120.46 (14)C20—C21—C16119.80 (13)
C6—C5—H5119.8C20—C21—H21120.1
C4—C5—H5119.8C16—C21—H21120.1
C7—C6—C5120.06 (15)C19—C22—H221111.6 (13)
C7—C6—H6120.0C19—C22—H222111.9 (13)
C5—C6—H6120.0H221—C22—H222105.5 (18)
C8—C7—C6120.05 (14)C19—C22—H223111.4 (14)
C8—C7—H7120.0H221—C22—H223109.5 (19)
C6—C7—H7120.0H222—C22—H223106.6 (19)
C7—C8—C9120.25 (14)C24—C23—C28119.57 (12)
C7—C8—H8119.9C24—C23—S1118.78 (10)
C9—C8—H8119.9C28—C23—S1121.44 (10)
C8—C9—C4120.48 (14)C25—C24—C23119.96 (12)
C8—C9—H9119.8C25—C24—H24120.0
C4—C9—H9119.8C23—C24—H24120.0
C11—C10—C15118.28 (12)C24—C25—C26121.25 (12)
C11—C10—C1122.05 (12)C24—C25—H25119.4
C15—C10—C1119.66 (12)C26—C25—H25119.4
C12—C11—C10120.62 (13)C27—C26—C25118.15 (12)
C12—C11—H11119.7C27—C26—C29120.85 (13)
C10—C11—H11119.7C25—C26—C29121.01 (13)
C13—C12—C11120.18 (13)C28—C27—C26121.20 (12)
C13—C12—H12119.9C28—C27—H27119.4
C11—C12—H12119.9C26—C27—H27119.4
C12—C13—C14119.75 (13)C27—C28—C23119.84 (12)
C12—C13—H13120.1C27—C28—H28120.1
C14—C13—H13120.1C23—C28—H28120.1
C15—C14—C13120.26 (14)C26—C29—H291110.6 (12)
C15—C14—H14119.9C26—C29—H292112.6 (13)
C13—C14—H14119.9H291—C29—H292106.3 (17)
C14—C15—C10120.89 (13)C26—C29—H293110.2 (14)
C14—C15—H15119.6H291—C29—H293106.8 (18)
C10—C15—H15119.6H292—C29—H293110.1 (18)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2031).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jacquot, S., Belaissaoui, A., Schmitt, G., Laude, B., Kubicki, M. M. & Blacque, O. (1999). Eur. J. Org. Chem. pp. 1541–1544.
  • Jacquot, S., Schmitt, G., Laude, B., Kubicki, M. M. & Blacque, O. (2000). Eur. J. Org. Chem. pp. 1235–1239.
  • Jacquot-Rousseau, S., Khatyr, A., Schmitt, G., Knorr, M., Kubicki, M. M. & Blacque, O. (2005). Inorg. Chem. Commun.8, 610–613.
  • Jacquot-Rousseau, S., Schmitt, G., Laude, B., Kubicki, M. M. & Blacque, O. (2002). J. Chem. Res. (S), pp. 151–152.
  • Nonius (1997). KappaCCD Server Software Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Tanimoto, S., Taniyasu, R., Takahashi, T., Miyake, T. & Okano, M. (1976). Bull. Chem. Soc. Jpn, 49, 1931–1936.
  • Truce, W. E. & Boudakian, M. M. (1956). J. Am. Chem. Soc.78, 2748–2751.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography