PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m326.
Published online 2008 January 9. doi:  10.1107/S1600536807068602
PMCID: PMC2960288

[2,6-Bis(5-chloro­pyrimidin-2-yl-κN)pyri­dine-κN](2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′)ruthenium(II) bis­(hexa­fluoridophosphate) acetonitrile disolvate

Abstract

In the title compound, [Ru(C13H7Cl2N5)(C15H11N3)](PF6)2·2CH3CN, the RuII atom is coordinated in a distorted octa­hedral geometry by a tridentate 2,2′:6′,2′′-terpyridine ligand and a tridentate 2,6-bis­(5-chloro­pyrimidin-2-yl)pyridine ligand. Least-squares mean-plane distortions of only 1.72 (2) and 2.91 (2)° of the pyrimidyl rings with respect to the central pyridine are observed for the bis­(pyrimid­yl)pyridine-based tridentate ligand, while the distal pyridyl rings of terpyridine twist by 13.43 (7) and 4.68 (9)° away from the central pyridine ring.

Related literature

For related literature, see: Fang et al. (2002 [triangle]); Groen et al. (1998 [triangle]); Medlycott & Hanan (2005 [triangle]); Polson et al. (2004 [triangle]); Pyo et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m326-scheme1.jpg

Experimental

Crystal data

  • [Ru(C13H7Cl2N5)(C15H11N3)](PF6)2·2C2H3N
  • M r = 1010.52
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m326-efi1.jpg
  • a = 16.3846 (2) Å
  • b = 62.8985 (8) Å
  • c = 14.5581 (2) Å
  • V = 15003.1 (3) Å3
  • Z = 16
  • Cu Kα radiation
  • μ = 6.43 mm−1
  • T = 100 (2) K
  • 0.48 × 0.25 × 0.07 mm

Data collection

  • Bruker SMART 2K diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.190, T max = 0.640
  • 45518 measured reflections
  • 7327 independent reflections
  • 7121 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.072
  • S = 1.08
  • 7327 reflections
  • 534 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.71 e Å−3
  • Δρmin = −0.38 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 3439 Friedel pairs
  • Flack parameter: 0.052 (5)

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Bruker, 1997 [triangle]); software used to prepare material for publication: UdMX (local program) and Spek (2003 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068602/hy2110sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068602/hy2110Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Natural Sciences and Engineering Research Council of Canada and the Ministère de l’Education du Québec for financial support.

supplementary crystallographic information

Comment

Ruthenium(II) complexes of tridentate polypyridine ligands have gained much attention in the last few decades due to their interesting photophysical properties. There have been many attempts to try and improve the photophysical properties of these complexes both in the ground state and excited states (Medlycott & Hanan, 2005). Manipulation of the electronic properties of the coordinated ligands can result in an improvement of the photophysical properties of the complex. We have previously employed this strategy by using electron-deficient trazine-based tridenate ligands (Polson et al., 2004) to lower the energy of the 3MLCT emitting state. Herein, we employ a functionalized bis(pyrimidin-2-yl)pyridine tridentate ligand for the synthesis of a ruthenium(II) complex in order to manipulate the energy of the 3MLCT emitting state. A structurally similar ligand, namely bis(pyrimidin-2-yl)pyridine, has previously been employed for the synthesis of palladium(II) complexes in order to study the dynamic behviour of such complexes in solution (Groen et al., 1998). However, the electronic behaviour and solid state structures of these systems were not reported.

The title compound crystalizes in the orthorhombic space group Fdd2 with one complex cation, two PF6- anions and two acetonitrile molecules in the asymmetric unit. The complex possesses octahedral geometry with significant distortions due to the tridentate nature of the coordinating ligands as previously observed in the parent complex [Ru(tpy)2]2+ (tpy = 2,2':6',2"-terpyridine) (Pyo et al., 1999). Small variations in the Ru—N bond distances are observed between the two coordinated ligands indicating minimal changes in the electronic (solid state) ground-state properties of the complex compared to [Ru(tpy)2]2+ (Pyo et al., 1999). Similarly, small changes are observed in the N,N,N-tridentate bite angles on the pyrimidyl-substituted ligand 158.87 (9)° compared to the coordinated tpy, 157.58 (9)°, indicating that introducing a pyrimidyl ring has minimal steric effects on the ligand field of the complex.

Comparison of the planarity of the two coordinated ligands in the title compound shows us that the bis(pyrimidin-2-yl)pyridine-based ligand lies planar. Least-square mean plane distortions of only 1.72 (2)° and 2.91 (2)° of the pyrimidyl rings with respect to the central pyridine are observed. However, the distal pyridyl-rings of terpyridine twist by 13.43 (7)° and 4.68 (9)° away from the central pyridine ring. This difference may be explained on considering the uncoordinated pyrimidyl-N atoms forming favourable intramolecular C–H···N interactions with the central pyridine ring. This coplanar effect has previously been shown to dramatically enhance the photophysical properties of such complexes (Fang et al., 2002).

We are currently investigating the consequences of pyrimidyl substitution of tridentate-tpy based ligands on the photophysical properties of their ruthenium(II) complexes.

Experimental

The title compound was synthesized following previously established procedures (Polson et al.,2004).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95Å and Uiso(H) = 1.2Ueq(C) for the ligands and with C—H = 0.98Å and Uiso(H) = 1.5Ueq(C) for the methyl group of acetonitrile. A final verification of possible voids was performed using the VOID routine of the PLATON program (Spek, 2003).

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. The PF6- counter anions, H atoms and acetonitrile solvent molecules have been omitted for clarity.

Crystal data

[Ru(C13H7Cl2N5)(C15H11N3)](PF6)2·2C2H3NF000 = 8032
Mr = 1010.52Dx = 1.789 Mg m3
Orthorhombic, Fdd2Cu Kα radiation λ = 1.54178 Å
Hall symbol: F 2 -2dCell parameters from 7885 reflections
a = 16.3846 (2) Åθ = 2.8–72.9º
b = 62.8985 (8) ŵ = 6.44 mm1
c = 14.5581 (2) ÅT = 100 (2) K
V = 15003.1 (3) Å3Block, red
Z = 160.48 × 0.25 × 0.07 mm

Data collection

Bruker SMART 2K diffractometer7327 independent reflections
Radiation source: X-ray Sealed Tube7121 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.053
T = 100(2) Kθmax = 73.0º
ω scansθmin = 2.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −19→18
Tmin = 0.190, Tmax = 0.640k = −77→77
45518 measured reflectionsl = −17→17

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029  w = 1/[σ2(Fo2) + (0.0495P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max = 0.002
S = 1.08Δρmax = 0.71 e Å3
7327 reflectionsΔρmin = −0.38 e Å3
534 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 3439 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.052 (5)
Secondary atom site location: difference Fourier map

Special details

Experimental. X-ray crystallographic data for the title compound were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 2 K Charged-Coupled Device (CCD) Area Detector using the program SMART and normal focus sealed tube source graphite monochromated Cu—Kα radiation. The crystal-to-detector distance was 4.908 cm, and the data collection was carried out in 512 x 512 pixel mode, utilizing 4 x 4 pixel binning. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 9.0 degree scan in 30 frames over four different parts of the reciprocal space (120 frames total). One complete sphere of data was collected, to better than 0.8Å resolution. Upon completion of the data collection, the first 101 frames were recollected in order to improve the decay correction analysis.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ru10.290100 (12)0.172144 (3)0.184589 (14)0.01338 (6)
N10.16426 (13)0.16743 (3)0.17514 (17)0.0127 (5)
N20.06878 (15)0.13822 (4)0.16488 (17)0.0192 (5)
N30.28547 (14)0.14071 (3)0.1797 (2)0.0158 (4)
N40.41289 (14)0.16477 (4)0.19327 (18)0.0162 (5)
N50.50172 (15)0.13428 (4)0.19511 (18)0.0185 (5)
N60.30146 (14)0.17985 (4)0.04606 (19)0.0161 (5)
N70.30453 (13)0.20369 (3)0.1912 (2)0.0171 (5)
N80.28073 (15)0.17725 (4)0.32451 (18)0.0164 (5)
Cl1−0.05599 (5)0.191627 (12)0.18178 (7)0.03047 (17)
Cl20.63956 (5)0.185785 (12)0.20297 (6)0.02663 (17)
C10.10321 (18)0.18085 (4)0.1752 (2)0.0187 (6)
H10.11390.19570.17640.022*
C20.02315 (19)0.17372 (5)0.1736 (2)0.0216 (6)
C30.00786 (18)0.15218 (5)0.1673 (2)0.0205 (6)
H3−0.04690.14730.16480.025*
C40.14379 (17)0.14580 (4)0.1707 (2)0.0161 (6)
C50.21284 (17)0.13084 (4)0.1747 (2)0.0166 (6)
C60.20777 (17)0.10876 (4)0.1748 (2)0.0179 (6)
H60.15630.10180.17230.021*
C70.27997 (18)0.09704 (4)0.1786 (2)0.0195 (6)
H70.27820.08190.17920.023*
C80.35412 (17)0.10751 (4)0.1814 (2)0.0184 (5)
H80.40360.09960.18160.022*
C90.35616 (16)0.12949 (4)0.1840 (2)0.0157 (5)
C100.42780 (17)0.14324 (4)0.1912 (2)0.0155 (5)
C110.56623 (19)0.14731 (5)0.1980 (2)0.0194 (6)
H110.61970.14150.19910.023*
C120.55631 (19)0.16922 (5)0.1993 (2)0.0195 (6)
C130.47850 (17)0.17753 (5)0.1987 (2)0.0175 (6)
H130.47110.19250.20220.021*
C210.30071 (18)0.16651 (5)−0.0258 (2)0.0195 (6)
H210.29850.1516−0.01470.023*
C220.3031 (2)0.17365 (5)−0.1157 (2)0.0246 (7)
H220.30320.1638−0.16510.029*
C230.3053 (2)0.19512 (6)−0.1327 (2)0.0264 (7)
H230.30350.2003−0.19390.032*
C240.31023 (19)0.20912 (5)−0.0588 (3)0.0236 (6)
H240.31440.2240−0.06900.028*
C250.30901 (18)0.20109 (5)0.0297 (2)0.0176 (6)
C260.31643 (18)0.21439 (5)0.1127 (2)0.0181 (6)
C270.3406 (2)0.23558 (5)0.1156 (2)0.0229 (7)
H270.34900.24340.06060.028*
C280.3523 (2)0.24505 (5)0.2008 (2)0.0283 (7)
H280.36900.25950.20400.034*
C290.3398 (2)0.23369 (5)0.2810 (2)0.0246 (7)
H290.34810.24020.33920.030*
C300.31470 (19)0.21252 (5)0.2749 (2)0.0193 (6)
C310.29853 (18)0.19766 (5)0.3507 (2)0.0191 (6)
C320.3001 (2)0.20342 (5)0.4418 (3)0.0257 (7)
H320.31490.21750.45910.031*
C330.2797 (2)0.18839 (6)0.5089 (2)0.0262 (7)
H330.28060.19220.57210.031*
C340.25841 (19)0.16815 (6)0.4826 (2)0.0241 (7)
H340.24300.15780.52700.029*
C350.25996 (19)0.16315 (5)0.3895 (2)0.0202 (6)
H350.24570.14910.37120.024*
P10.53369 (4)0.138455 (11)−0.06986 (7)0.01995 (15)
F110.55805 (15)0.15979 (3)−0.12300 (15)0.0394 (5)
F120.47251 (14)0.15156 (4)−0.00468 (16)0.0489 (6)
F130.60507 (12)0.14221 (4)0.00174 (15)0.0395 (5)
F140.59497 (16)0.12565 (4)−0.13491 (16)0.0478 (6)
F150.46190 (13)0.13468 (4)−0.14174 (17)0.0456 (6)
F160.50911 (17)0.11725 (4)−0.01669 (18)0.0514 (7)
P20.55212 (6)0.220273 (12)0.44248 (8)0.02989 (19)
F210.62202 (18)0.23668 (4)0.41314 (18)0.0620 (8)
F220.61423 (13)0.20103 (4)0.4277 (2)0.0494 (6)
F230.52253 (16)0.21836 (4)0.33806 (17)0.0481 (6)
F240.4896 (2)0.23943 (4)0.45789 (19)0.0691 (9)
F250.57961 (18)0.22231 (4)0.54775 (16)0.0499 (6)
F260.48287 (14)0.20363 (4)0.47239 (17)0.0412 (5)
C410.5921 (3)0.24842 (7)0.1749 (4)0.0671 (15)
H41A0.56720.24850.23620.101*
H41B0.61250.23410.16130.101*
H41C0.55110.25240.12910.101*
C420.6591 (3)0.26342 (6)0.1723 (3)0.0385 (9)
N430.7112 (2)0.27540 (5)0.1708 (3)0.0412 (9)
C510.5307 (3)0.20455 (7)−0.0195 (3)0.0445 (10)
H51A0.56800.20050.03020.067*
H51B0.49510.1925−0.03410.067*
H51C0.49740.21670.00000.067*
C520.5776 (2)0.21037 (5)−0.1004 (3)0.0301 (8)
N530.6152 (2)0.21498 (5)−0.1637 (2)0.0403 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ru10.01374 (10)0.00810 (9)0.01831 (10)0.00004 (7)0.00117 (8)0.00034 (9)
N10.0076 (10)0.0176 (11)0.0129 (12)−0.0043 (8)−0.0006 (9)0.0052 (10)
N20.0179 (13)0.0198 (12)0.0198 (14)−0.0043 (10)−0.0001 (10)0.0000 (10)
N30.0191 (11)0.0120 (10)0.0164 (11)0.0004 (8)−0.0004 (10)0.0014 (12)
N40.0171 (12)0.0150 (11)0.0167 (12)−0.0012 (8)0.0020 (11)−0.0005 (11)
N50.0189 (12)0.0146 (11)0.0220 (13)0.0035 (8)0.0033 (11)0.0011 (10)
N60.0139 (12)0.0110 (12)0.0233 (14)−0.0003 (9)0.0007 (10)0.0012 (10)
N70.0165 (12)0.0104 (10)0.0243 (13)0.0007 (8)0.0028 (12)0.0009 (11)
N80.0151 (12)0.0151 (12)0.0191 (13)−0.0002 (9)−0.0001 (9)−0.0003 (10)
Cl10.0194 (3)0.0265 (4)0.0456 (5)0.0084 (3)0.0040 (4)0.0037 (4)
Cl20.0186 (4)0.0253 (4)0.0360 (5)−0.0046 (3)0.0018 (3)−0.0041 (3)
C10.0202 (14)0.0153 (12)0.0205 (15)−0.0006 (10)0.0014 (13)0.0026 (11)
C20.0188 (13)0.0230 (14)0.0230 (18)0.0043 (11)0.0024 (13)0.0019 (13)
C30.0134 (14)0.0280 (15)0.0200 (16)−0.0011 (11)−0.0002 (11)−0.0008 (12)
C40.0182 (14)0.0148 (12)0.0153 (15)−0.0016 (10)0.0032 (11)−0.0023 (11)
C50.0199 (13)0.0148 (12)0.0150 (15)−0.0041 (10)0.0014 (11)0.0004 (12)
C60.0207 (13)0.0128 (12)0.0202 (16)−0.0050 (10)0.0020 (12)−0.0008 (12)
C70.0275 (15)0.0089 (11)0.0220 (15)0.0012 (10)0.0001 (13)0.0009 (13)
C80.0240 (14)0.0129 (12)0.0183 (13)0.0039 (10)0.0012 (14)0.0025 (12)
C90.0181 (13)0.0120 (12)0.0171 (13)0.0008 (9)0.0015 (13)0.0015 (12)
C100.0179 (13)0.0139 (12)0.0146 (13)0.0043 (9)0.0001 (12)0.0011 (12)
C110.0167 (14)0.0236 (14)0.0178 (15)0.0030 (11)0.0007 (12)0.0019 (12)
C120.0185 (14)0.0202 (14)0.0197 (18)−0.0038 (11)0.0021 (12)−0.0029 (12)
C130.0176 (14)0.0164 (13)0.0184 (15)−0.0020 (10)0.0035 (12)−0.0011 (11)
C210.0166 (15)0.0147 (14)0.0272 (16)−0.0008 (11)−0.0005 (12)−0.0031 (12)
C220.0254 (17)0.0258 (17)0.0225 (17)−0.0011 (13)0.0016 (13)−0.0064 (13)
C230.0259 (17)0.0316 (19)0.0218 (16)−0.0009 (14)0.0022 (13)0.0042 (14)
C240.0235 (15)0.0196 (14)0.0277 (17)−0.0016 (11)0.0048 (15)0.0047 (14)
C250.0160 (14)0.0130 (14)0.0237 (15)−0.0031 (11)0.0010 (12)0.0025 (12)
C260.0148 (14)0.0148 (14)0.0247 (16)0.0009 (11)0.0005 (12)0.0013 (12)
C270.0269 (16)0.0126 (14)0.0293 (17)−0.0019 (12)0.0033 (13)0.0021 (12)
C280.0359 (19)0.0136 (14)0.035 (2)−0.0055 (12)0.0036 (15)−0.0036 (13)
C290.0305 (17)0.0147 (14)0.0287 (17)−0.0020 (12)0.0007 (14)−0.0057 (12)
C300.0168 (15)0.0174 (15)0.0237 (16)0.0009 (11)0.0008 (12)−0.0040 (12)
C310.0157 (15)0.0159 (15)0.0258 (17)0.0005 (11)0.0024 (12)−0.0006 (12)
C320.0273 (16)0.0277 (17)0.0222 (16)−0.0046 (12)−0.0017 (14)−0.0065 (15)
C330.0233 (17)0.034 (2)0.0213 (16)−0.0021 (14)0.0001 (13)−0.0002 (14)
C340.0149 (16)0.0327 (18)0.0245 (16)−0.0007 (13)−0.0002 (13)0.0058 (14)
C350.0159 (15)0.0171 (14)0.0277 (16)−0.0009 (11)0.0008 (12)0.0045 (12)
P10.0173 (3)0.0206 (3)0.0220 (4)−0.0014 (3)−0.0014 (3)0.0043 (4)
F110.0604 (15)0.0288 (11)0.0290 (11)−0.0096 (10)−0.0010 (10)0.0081 (9)
F120.0412 (13)0.0762 (18)0.0295 (12)0.0268 (12)0.0053 (10)0.0076 (12)
F130.0272 (11)0.0636 (15)0.0277 (11)−0.0158 (10)−0.0083 (9)0.0098 (10)
F140.0543 (15)0.0551 (15)0.0339 (12)0.0287 (12)0.0038 (11)0.0004 (11)
F150.0329 (13)0.0671 (17)0.0369 (13)−0.0200 (11)−0.0104 (10)0.0106 (12)
F160.0697 (17)0.0369 (13)0.0477 (15)−0.0190 (12)−0.0112 (13)0.0209 (11)
P20.0418 (5)0.0167 (3)0.0312 (5)−0.0054 (3)0.0004 (4)−0.0044 (4)
F210.093 (2)0.0467 (14)0.0464 (16)−0.0465 (14)−0.0020 (14)0.0039 (12)
F220.0305 (11)0.0396 (12)0.0783 (18)−0.0016 (9)0.0024 (13)−0.0136 (14)
F230.0615 (16)0.0487 (15)0.0342 (12)−0.0094 (12)−0.0039 (11)−0.0094 (11)
F240.116 (3)0.0338 (13)0.0576 (19)0.0370 (15)0.0013 (16)−0.0069 (12)
F250.0831 (19)0.0298 (12)0.0367 (13)−0.0235 (12)−0.0118 (12)0.0036 (10)
F260.0352 (12)0.0343 (12)0.0541 (14)−0.0045 (9)0.0122 (10)−0.0061 (10)
C410.074 (3)0.048 (3)0.080 (4)−0.016 (2)−0.032 (3)0.020 (3)
C420.054 (2)0.0251 (17)0.036 (2)0.0097 (16)−0.0056 (19)0.0037 (16)
N430.050 (2)0.0265 (15)0.047 (2)0.0066 (14)0.0009 (16)0.0026 (15)
C510.044 (2)0.044 (2)0.045 (2)−0.0034 (18)0.0125 (19)0.0020 (19)
C520.0322 (19)0.0219 (16)0.036 (2)0.0064 (13)−0.0042 (15)−0.0004 (14)
N530.053 (2)0.0313 (17)0.0368 (18)0.0028 (14)0.0104 (16)0.0072 (14)

Geometric parameters (Å, °)

Ru1—N12.088 (2)C22—H220.95
Ru1—N31.980 (2)C23—C241.393 (5)
Ru1—N42.069 (2)C23—H230.95
Ru1—N62.083 (3)C24—C251.383 (5)
Ru1—N72.000 (2)C24—H240.95
Ru1—N82.068 (3)C25—C261.475 (4)
N1—C11.309 (4)C26—C271.391 (4)
N1—C41.403 (3)C27—C281.389 (5)
N2—C41.321 (4)C27—H270.95
N2—C31.330 (4)C28—C291.384 (5)
N3—C51.344 (4)C28—H280.95
N3—C91.358 (3)C29—C301.396 (4)
N4—C131.344 (4)C29—H290.95
N4—C101.376 (3)C30—C311.471 (4)
N5—C101.337 (3)C31—C321.375 (5)
N5—C111.339 (4)C32—C331.399 (5)
N6—C211.342 (4)C32—H320.95
N6—C251.363 (4)C33—C341.375 (5)
N7—C261.340 (4)C33—H330.95
N7—C301.349 (4)C34—C351.392 (4)
N8—C351.341 (4)C34—H340.95
N8—C311.370 (4)C35—H350.95
Cl1—C21.722 (3)P1—F131.584 (2)
Cl2—C121.717 (3)P1—F151.592 (2)
C1—C21.386 (4)P1—F161.594 (2)
C1—H10.95P1—F141.598 (2)
C2—C31.381 (4)P1—F111.599 (2)
C3—H30.95P1—F121.608 (2)
C4—C51.473 (4)P2—F221.596 (2)
C5—C61.391 (4)P2—F241.598 (3)
C6—C71.395 (4)P2—F211.600 (2)
C6—H60.95P2—F231.600 (3)
C7—C81.382 (4)P2—F251.602 (2)
C7—H70.95P2—F261.604 (2)
C8—C91.383 (4)C41—C421.448 (6)
C8—H80.95C41—H41a0.98
C9—C101.462 (4)C41—H41b0.98
C11—C121.387 (4)C41—H41c0.98
C11—H110.95C42—N431.140 (5)
C12—C131.378 (4)C51—C521.453 (5)
C13—H130.95C51—H51a0.98
C21—C221.383 (5)C51—H51b0.98
C21—H210.95C51—H51c0.98
C22—C231.374 (5)C52—N531.145 (5)
N3—Ru1—N7175.35 (9)C24—C23—H23120.5
N3—Ru1—N8100.81 (12)C25—C24—C23119.2 (3)
N7—Ru1—N878.90 (12)C25—C24—H24120.4
N3—Ru1—N479.37 (9)C23—C24—H24120.4
N7—Ru1—N496.00 (9)N6—C25—C24121.5 (3)
N8—Ru1—N492.69 (10)N6—C25—C26114.8 (3)
N3—Ru1—N6101.62 (11)C24—C25—C26123.7 (3)
N7—Ru1—N678.75 (11)N7—C26—C27119.8 (3)
N8—Ru1—N6157.58 (9)N7—C26—C25113.7 (3)
N4—Ru1—N691.4 (1)C27—C26—C25126.3 (3)
N3—Ru1—N179.51 (9)C28—C27—C26118.5 (3)
N7—Ru1—N1105.12 (9)C28—C27—H27120.7
N8—Ru1—N190.79 (10)C26—C27—H27120.7
N4—Ru1—N1158.87 (9)C29—C28—C27120.7 (3)
N6—Ru1—N193.3 (1)C29—C28—H28119.6
C1—N1—C4116.3 (2)C27—C28—H28119.6
C1—N1—RU1131.55 (19)C28—C29—C30118.8 (3)
C4—N1—RU1112.15 (18)C28—C29—H29120.6
C4—N2—C3117.3 (3)C30—C29—H29120.6
C5—N3—C9121.2 (2)N7—C30—C29119.1 (3)
C5—N3—RU1119.80 (18)N7—C30—C31113.2 (3)
C9—N3—RU1119.00 (18)C29—C30—C31127.7 (3)
C13—N4—C10116.5 (2)N8—C31—C32121.3 (3)
C13—N4—RU1130.4 (2)N8—C31—C30115.1 (3)
C10—N4—RU1113.08 (18)C32—C31—C30123.6 (3)
C10—N5—C11117.3 (2)C31—C32—C33119.4 (3)
C21—N6—C25118.5 (3)C31—C32—H32120.3
C21—N6—RU1127.5 (2)C33—C32—H32120.3
C25—N6—RU1113.9 (2)C34—C33—C32119.5 (3)
C26—N7—C30123.0 (2)C34—C33—H33120.3
C26—N7—RU1118.3 (2)C32—C33—H33120.3
C30—N7—RU1117.8 (2)C33—C34—C35118.4 (3)
C35—N8—C31118.5 (3)C33—C34—H34120.8
C35—N8—RU1127.7 (2)C35—C34—H34120.8
C31—N8—RU1113.8 (2)N8—C35—C34122.9 (3)
N1—C1—C2121.0 (3)N8—C35—H35118.6
N1—C1—H1119.5C34—C35—H35118.6
C2—C1—H1119.5F13—P1—F15179.9 (2)
C3—C2—C1119.3 (3)F13—P1—F1689.53 (13)
C3—C2—CL1120.6 (2)F15—P1—F1690.45 (13)
C1—C2—CL1120.0 (2)F13—P1—F1490.07 (13)
N2—C3—C2120.9 (3)F15—P1—F1489.98 (15)
N2—C3—H3119.6F16—P1—F1491.42 (15)
C2—C3—H3119.6F13—P1—F1190.51 (12)
N2—C4—N1125.1 (3)F15—P1—F1189.51 (13)
N2—C4—C5119.1 (3)F16—P1—F11179.77 (18)
N1—C4—C5115.7 (2)F14—P1—F1188.81 (14)
N3—C5—C6120.9 (3)F13—P1—F1289.74 (14)
N3—C5—C4112.8 (2)F15—P1—F1290.21 (13)
C6—C5—C4126.3 (3)F16—P1—F1289.14 (15)
C5—C6—C7118.5 (3)F14—P1—F12179.41 (16)
C5—C6—H6120.8F11—P1—F1290.63 (14)
C7—C6—H6120.8F22—P2—F24179.57 (19)
C8—C7—C6119.7 (2)F22—P2—F2189.79 (15)
C8—C7—H7120.2F24—P2—F2190.59 (18)
C6—C7—H7120.2F22—P2—F2390.44 (15)
C7—C8—C9119.9 (3)F24—P2—F2389.76 (15)
C7—C8—H8120.1F21—P2—F2390.67 (14)
C9—C8—H8120.1F22—P2—F2590.61 (16)
N3—C9—C8119.8 (2)F24—P2—F2589.19 (15)
N3—C9—C10112.4 (2)F21—P2—F2590.15 (13)
C8—C9—C10127.8 (2)F23—P2—F25178.67 (18)
N5—C10—N4125.1 (3)F22—P2—F2689.60 (12)
N5—C10—C9118.7 (2)F24—P2—F2690.02 (16)
N4—C10—C9116.2 (2)F21—P2—F26179.30 (17)
N5—C11—C12121.1 (3)F23—P2—F2689.68 (13)
N5—C11—H11119.5F25—P2—F2689.51 (14)
C12—C11—H11119.5C42—C41—H41A109.5
C13—C12—C11119.0 (3)C42—C41—H41B109.5
C13—C12—CL2120.3 (2)H41A—C41—H41B109.5
C11—C12—CL2120.7 (2)C42—C41—H41C109.5
N4—C13—C12120.9 (3)H41A—C41—H41C109.5
N4—C13—H13119.5H41B—C41—H41C109.5
C12—C13—H13119.5N43—C42—C41179.1 (5)
N6—C21—C22122.3 (3)C52—C51—H51A109.5
N6—C21—H21118.9C52—C51—H51B109.5
C22—C21—H21118.9H51A—C51—H51B109.5
C23—C22—C21119.4 (3)C52—C51—H51C109.5
C23—C22—H22120.3H51A—C51—H51C109.5
C21—C22—H22120.3H51B—C51—H51C109.5
C22—C23—C24118.9 (3)N53—C52—C51179.4 (5)
C22—C23—H23120.5
N3—RU1—N1—C1178.0 (3)N1—C4—C5—N3−1.7 (4)
N7—RU1—N1—C1−1.6 (3)N2—C4—C5—C6−1.3 (5)
N8—RU1—N1—C177.1 (3)N1—C4—C5—C6177.6 (3)
N4—RU1—N1—C1176.7 (3)N3—C5—C6—C7−1.1 (5)
N6—RU1—N1—C1−80.8 (3)C4—C5—C6—C7179.7 (3)
N3—RU1—N1—C40.1 (2)C5—C6—C7—C8−0.5 (6)
N7—RU1—N1—C4−179.5 (2)C6—C7—C8—C92.5 (6)
N8—RU1—N1—C4−100.8 (2)C5—N3—C9—C81.3 (5)
N4—RU1—N1—C4−1.3 (4)RU1—N3—C9—C8179.5 (3)
N6—RU1—N1—C4101.3 (2)C5—N3—C9—C10−178.7 (3)
N8—RU1—N3—C587.7 (3)RU1—N3—C9—C10−0.5 (4)
N4—RU1—N3—C5178.4 (3)C7—C8—C9—N3−2.9 (5)
N6—RU1—N3—C5−92.3 (3)C7—C8—C9—C10177.1 (3)
N1—RU1—N3—C5−1.1 (3)C11—N5—C10—N4−2.5 (5)
N8—RU1—N3—C9−90.5 (3)C11—N5—C10—C9177.4 (3)
N4—RU1—N3—C90.2 (3)C13—N4—C10—N50.7 (5)
N6—RU1—N3—C989.5 (3)RU1—N4—C10—N5179.5 (3)
N1—RU1—N3—C9−179.3 (3)C13—N4—C10—C9−179.2 (3)
N3—RU1—N4—C13178.7 (3)RU1—N4—C10—C9−0.4 (4)
N7—RU1—N4—C13−1.7 (3)N3—C9—C10—N5−179.4 (3)
N8—RU1—N4—C13−80.8 (3)C8—C9—C10—N50.6 (5)
N6—RU1—N4—C1377.2 (3)N3—C9—C10—N40.6 (4)
N1—RU1—N4—C13−179.9 (2)C8—C9—C10—N4−179.4 (3)
N3—RU1—N4—C100.1 (2)C10—N5—C11—C121.7 (4)
N7—RU1—N4—C10179.7 (2)N5—C11—C12—C130.7 (5)
N8—RU1—N4—C10100.6 (2)N5—C11—C12—CL2−180.0 (2)
N6—RU1—N4—C10−101.4 (2)C10—N4—C13—C121.9 (4)
N1—RU1—N4—C101.4 (4)RU1—N4—C13—C12−176.7 (2)
N3—RU1—N6—C213.4 (3)C11—C12—C13—N4−2.6 (5)
N7—RU1—N6—C21178.7 (3)CL2—C12—C13—N4178.1 (2)
N8—RU1—N6—C21−176.7 (2)C25—N6—C21—C22−3.4 (5)
N4—RU1—N6—C2182.9 (3)RU1—N6—C21—C22175.4 (2)
N1—RU1—N6—C21−76.5 (2)N6—C21—C22—C23−0.8 (5)
N3—RU1—N6—C25−177.8 (2)C21—C22—C23—C243.9 (5)
N7—RU1—N6—C25−2.5 (2)C22—C23—C24—C25−2.9 (5)
N8—RU1—N6—C252.2 (4)C21—N6—C25—C244.5 (4)
N4—RU1—N6—C25−98.3 (2)RU1—N6—C25—C24−174.5 (2)
N1—RU1—N6—C25102.3 (2)C21—N6—C25—C26−174.9 (3)
N8—RU1—N7—C26179.8 (2)RU1—N6—C25—C266.1 (3)
N4—RU1—N7—C2688.3 (2)C23—C24—C25—N6−1.3 (5)
N6—RU1—N7—C26−2.0 (2)C23—C24—C25—C26178.0 (3)
N1—RU1—N7—C26−92.4 (2)C30—N7—C26—C270.2 (4)
N8—RU1—N7—C3010.2 (2)RU1—N7—C26—C27−168.9 (2)
N4—RU1—N7—C30−81.4 (2)C30—N7—C26—C25174.8 (3)
N6—RU1—N7—C30−171.6 (2)RU1—N7—C26—C255.7 (3)
N1—RU1—N7—C3098.0 (2)N6—C25—C26—N7−7.7 (4)
N3—RU1—N8—C35−12.3 (3)C24—C25—C26—N7172.9 (3)
N7—RU1—N8—C35172.5 (3)N6—C25—C26—C27166.5 (3)
N4—RU1—N8—C35−91.9 (3)C24—C25—C26—C27−12.9 (5)
N6—RU1—N8—C35167.8 (2)N7—C26—C27—C280.4 (5)
N1—RU1—N8—C3567.2 (3)C25—C26—C27—C28−173.5 (3)
N3—RU1—N8—C31167.6 (2)C26—C27—C28—C29−0.2 (5)
N7—RU1—N8—C31−7.6 (2)C27—C28—C29—C30−0.4 (5)
N4—RU1—N8—C3187.9 (2)C26—N7—C30—C29−0.9 (4)
N6—RU1—N8—C31−12.3 (4)RU1—N7—C30—C29168.3 (2)
N1—RU1—N8—C31−112.9 (2)C26—N7—C30—C31−179.7 (3)
C4—N1—C1—C21.8 (4)RU1—N7—C30—C31−10.6 (3)
RU1—N1—C1—C2−176.1 (2)C28—C29—C30—N71.0 (5)
N1—C1—C2—C3−3.1 (5)C28—C29—C30—C31179.6 (3)
N1—C1—C2—CL1175.5 (3)C35—N8—C31—C323.9 (4)
C4—N2—C3—C21.5 (4)RU1—N8—C31—C32−176.0 (2)
C1—C2—C3—N21.5 (5)C35—N8—C31—C30−175.6 (3)
CL1—C2—C3—N2−177.1 (2)RU1—N8—C31—C304.5 (3)
C3—N2—C4—N1−3.0 (4)N7—C30—C31—N83.6 (4)
C3—N2—C4—C5175.8 (3)C29—C30—C31—N8−175.1 (3)
C1—N1—C4—N21.3 (4)N7—C30—C31—C32−175.9 (3)
RU1—N1—C4—N2179.6 (2)C29—C30—C31—C325.4 (5)
C1—N1—C4—C5−177.4 (3)N8—C31—C32—C33−2.8 (5)
RU1—N1—C4—C50.8 (3)C30—C31—C32—C33176.7 (3)
C9—N3—C5—C60.7 (6)C31—C32—C33—C340.0 (5)
RU1—N3—C5—C6−177.5 (3)C32—C33—C34—C351.6 (5)
C9—N3—C5—C4180.0 (3)C31—N8—C35—C34−2.3 (5)
RU1—N3—C5—C41.8 (4)RU1—N8—C35—C34177.6 (2)
N2—C4—C5—N3179.5 (3)C33—C34—C35—N8−0.5 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2110).

References

  • Bruker (1997). SHELXTL Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SMART (Version 5.059) and SAINT (Version 6.06). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fang, Y.-Q., Taylor, N. J., Hanan, G. S., Loiseau, F., Passalacqua, R. & Campagna, S. (2002). J. Am. Chem. Soc.124, 7912–7913. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Groen, J. H., van Leeuwen, P. W. N. M. & Vrieze, K. (1998). Dalton Trans. pp. 113–117.
  • Medlycott, E. A. & Hanan, G. S. (2005). Chem. Soc. Rev.34, 133–142. [PubMed]
  • Polson, M. I. J., Medlycott, E. A., Hanan, G. S., Mikelsons, L., Taylor, N. J., Watanabe, M., Tanaka, Y., Loiseau, F., Passalacqua, R. & Campagna, S. (2004). Chem. Eur. J.10, 3640–3648. [PubMed]
  • Pyo, S., Perez-Cordero, E., Bott, S. G. & Echegoyen, L. (1999). Inorg. Chem.38, 3337–3343. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography