PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o426.
Published online 2008 January 11. doi:  10.1107/S1600536808000524
PMCID: PMC2960285

2-Amino-4,6-dimethyl­pyrimidinium 3,5-dinitro­benzoate dihydrate

Abstract

In the title compound, C6H10N3 +·C7H3N2O6 ·2H2O, the amino­pyrimidine mol­ecule is protonated at one of the pyrimidine N atoms. The carboxyl­ate group of the 3,5-dinitro­benzoate anion inter­acts with the protonated pyrimidine N atom and the 2-amino group through a pair of N—H(...)O hydrogen bonds, forming an R 2 2(8) motif. Two inversion-related pyrimidine rings are linked via a pair of N—H(...)N hydrogen bonds, also forming an R 2 2(8) ring motif.

Related literature

For related literature, see: Allen et al. (1998 [triangle]); Baker & Santi (1965 [triangle]); Baskar Raj et al. (2003 [triangle]); Desiraju (1989 [triangle]); Hunt et al. (1980 [triangle]); Lynch & Jones (2004 [triangle]); Panneerselvam et al. (2004 [triangle]); Prince et al. (1991 [triangle]); Stanley et al. (2005 [triangle]); Subashini et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o426-scheme1.jpg

Experimental

Crystal data

  • C6H10N3 +·C7H3N2O6 ·2H2O
  • M r = 371.32
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o426-efi1.jpg
  • a = 7.1465 (3) Å
  • b = 11.0215 (5) Å
  • c = 11.1531 (4) Å
  • α = 99.473 (3)°
  • β = 101.322 (3)°
  • γ = 100.826 (2)°
  • V = 827.33 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 120 K
  • 0.44 × 0.36 × 0.23 mm

Data collection

  • Bruker–Nonius KappaCCD area-detector diffractometer
  • Absorption correction: none
  • 15739 measured reflections
  • 3235 independent reflections
  • 2283 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.171
  • S = 1.04
  • 3235 reflections
  • 238 parameters
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000524/rz2189sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000524/rz2189Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AS thanks Bharathidasan University for the award of a Research Student Fellowship (Reference CCCD/PhD-2/15504/2004). DEL thanks the EPSRC National Crystallography Service (Southampton, England) for the X-ray data collection.

supplementary crystallographic information

Comment

Hydrogen-bonding patterns involving aminopyrimidine and carboxylates have been observed in drug–receptor interactions, protein–nucleic acid interactions and supramolecular architectures (Desiraju, 1989). Studies of such interactions are also of current interest because of their applications in drug design and the crystal engineering of pharmaceuticals (Stanley et al., 2005). Pyrimidine and aminopyrimidine derivatives are biologically important compounds as they occur in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker & Santi, 1965). Two monoclinic polymorphic forms of 3,5-dinitrobenzoic acid (Prince et al., 1991) have already been reported. From our laboratory, the crystal structures of 2-amino-4,6-dimethylpyrimidinium bromide 2-amino-4,6-dimethyl pyrimidine monohydrate (Panneerselvam et al., 2004) and 2-amino-4,6-dimethylpyrimidinium picrate (Subashini et al., 2006) have been reported. The present study was undertaken to explore the hydrogen-bonding patterns involving aminopyrimidine–carboxylate interactions.

The asymmetric unit of the title compound contains one 2-amino-4,6-dimethylpyrimidinium cation, one 3,5-dinitrobenzoate anion and two water molecules (Fig. 1). Protonation of the pyrimidine base on the N1 site is reflected in a change in bond angle. The C2—N3—C4 angle at unprotonated atom N3 is 117.6 (2)°, while for protonated atom N1, the C2—N1—C6 angle is 120.5 (2)°. The carboxylate group of the 3,5-dinitrobenzoate anion (O1 and O2) interacts with the protonated N1 atom and the 2-amino group of the pyrimidine moiety through a pair of N—H···O hydrogen bonds, forming a fork-like interaction with graph-set R22(8) (Lynch & Jones, 2004). This R22(8) motif is one of the 24 most frequently observed bimolecular cyclic hydrogen-bonded motifs in organic crystal structures (Allen et al., 1998). The aminopyrimidinium cations are centrosymmetrically paired through two N—H···N hydrogen hydrogen bonds involving the 2-amino group and the N3 nitrogen atom (graph-set R22(8)) (Fig. 2). A similar type of interaction has been observed in crystal structure of trimethoprim m-chlorobenzoate and trimethoprim m-chlorobenzoate dihydrate (Baskar Raj et al., 2003).

Experimental

A hot ethanol solution of 2-amino-4,6-dimethylpyrimidine (31 mg, Aldrich) was added to a hot aqueous solution of 3,5-dinitrobenzoic acid (53 mg, LOBA) in a 1:1 molar ratio. The resultant solution was warmed over a water bath for an hour. After a few days brown colored block shaped crystals were obtained as a result of slow evaporation.

Refinement

All H atoms were placed in idealized locations and were refined using a riding model, with C—H = 0.95–0.99 Å, N—H = 0.88 Å and Uiso(H) = 1.2 Ueq(C, N). The thermal parameters of both water molecules are very high. All the H atoms of the water molecules have been fixed and were not refined.

Figures

Fig. 1.
An ORTEP view of the asymmetric unit of the title compound showing 30% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.
Fig. 2.
Hydrogen bonding patterns in the title compound. Symmetry codes: (i) -x, -y + 1, -z + 1.

Crystal data

C6H10N3+·C7H3N2O6·2H2OZ = 2
Mr = 371.32F000 = 388
Triclinic, P1Dx = 1.491 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.1465 (3) ÅCell parameters from 2.5 reflections
b = 11.0215 (5) Åθ = 3.8–26.0º
c = 11.1531 (4) ŵ = 0.13 mm1
α = 99.473 (3)ºT = 120 K
β = 101.322 (3)ºBlock, brown
γ = 100.826 (2)º0.44 × 0.36 × 0.23 mm
V = 827.33 (6) Å3

Data collection

Bruker–Nonius KappaCCD area-detector diffractometer2283 reflections with I > 2σ(I)
Radiation source: Bruker–Nonius FR591 rotating anodeRint = 0.043
Monochromator: graphiteθmax = 26.0º
T = 120 Kθmin = 3.8º
[var phi] and ω scansh = −8→8
Absorption correction: nonek = −13→13
15739 measured reflectionsl = −13→13
3235 independent reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059  w = 1/[σ2(Fo2) + (0.0801P)2 + 0.6543P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.171(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.50 e Å3
3235 reflectionsΔρmin = −0.55 e Å3
238 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (9)
Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2> σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.2027 (3)0.33914 (19)0.72583 (18)0.0274 (6)
N20.1151 (3)0.35467 (18)0.51987 (17)0.0283 (6)
N30.0823 (3)0.51366 (18)0.67131 (17)0.0284 (6)
C20.1339 (3)0.4032 (2)0.6397 (2)0.0255 (7)
C40.1050 (4)0.5608 (2)0.7929 (2)0.0316 (7)
C50.1819 (4)0.4998 (2)0.8853 (2)0.0344 (8)
C60.2299 (4)0.3872 (2)0.8500 (2)0.0321 (8)
C70.0403 (4)0.6801 (3)0.8255 (2)0.0434 (9)
C80.3079 (4)0.3114 (3)0.9388 (2)0.0425 (9)
O10.2748 (3)0.11664 (16)0.66737 (15)0.0340 (5)
O20.1737 (3)0.11087 (15)0.46282 (15)0.0330 (5)
O30.2112 (3)−0.24607 (19)0.15879 (17)0.0491 (7)
O40.3323 (3)−0.39796 (18)0.21663 (17)0.0432 (6)
O50.5402 (3)−0.39570 (18)0.65403 (19)0.0467 (7)
O60.4999 (3)−0.2476 (2)0.79214 (18)0.0545 (8)
N40.2803 (3)−0.2987 (2)0.23984 (19)0.0335 (7)
N50.4871 (3)−0.2986 (2)0.6838 (2)0.0355 (7)
C90.2796 (3)−0.0654 (2)0.5226 (2)0.0258 (7)
C100.2515 (3)−0.1244 (2)0.3983 (2)0.0271 (7)
C110.3026 (3)−0.2394 (2)0.3714 (2)0.0275 (7)
C120.3787 (3)−0.3000 (2)0.4618 (2)0.0285 (7)
C130.4021 (3)−0.2388 (2)0.5846 (2)0.0284 (7)
C140.3543 (3)−0.1233 (2)0.6170 (2)0.0279 (7)
C150.2368 (3)0.0642 (2)0.5522 (2)0.0282 (7)
O1W0.0473 (17)0.0204 (5)0.1315 (8)0.279 (6)
O2W0.229 (3)−0.0073 (6)−0.0151 (9)0.474 (10)
H10.230000.265800.701300.0330*
H2A0.069600.394400.462300.0340*
H2B0.148300.282700.497900.0340*
H50.200500.536300.971300.0410*
H7A0.081100.737800.772500.0650*
H7B0.099900.719600.913500.0650*
H7C−0.102800.661400.811800.0650*
H8A0.207200.235500.933300.0640*
H8B0.343900.362101.024200.0640*
H8C0.423800.286600.917300.0640*
H100.19820−0.086500.332800.0320*
H120.41290−0.378700.441200.0340*
H140.37250−0.084600.702400.0330*
H1W0.085700.031200.211000.5000*
H2W0.086400.092800.113600.5000*
H3W0.27840−0.065300.017300.5000*
H4W0.313800.01390−0.062800.5000*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0299 (11)0.0296 (11)0.0237 (10)0.0107 (8)0.0048 (8)0.0057 (8)
N20.0387 (11)0.0276 (11)0.0201 (10)0.0132 (9)0.0051 (8)0.0048 (8)
N30.0335 (11)0.0288 (11)0.0224 (10)0.0102 (9)0.0049 (8)0.0023 (8)
C20.0258 (12)0.0260 (12)0.0247 (12)0.0069 (9)0.0044 (9)0.0057 (9)
C40.0340 (13)0.0349 (13)0.0242 (12)0.0086 (11)0.0057 (10)0.0019 (10)
C50.0377 (14)0.0418 (15)0.0210 (12)0.0098 (12)0.0052 (10)−0.0002 (11)
C60.0310 (13)0.0429 (15)0.0223 (12)0.0089 (11)0.0044 (10)0.0079 (11)
C70.0584 (18)0.0442 (16)0.0293 (14)0.0246 (14)0.0089 (13)−0.0008 (12)
C80.0509 (17)0.0532 (17)0.0275 (13)0.0204 (14)0.0061 (12)0.0137 (12)
O10.0443 (10)0.0293 (9)0.0276 (9)0.0117 (8)0.0058 (8)0.0034 (7)
O20.0418 (10)0.0282 (9)0.0306 (9)0.0130 (8)0.0058 (7)0.0081 (7)
O30.0682 (14)0.0540 (13)0.0280 (10)0.0282 (11)0.0047 (9)0.0079 (9)
O40.0543 (12)0.0393 (11)0.0371 (10)0.0195 (9)0.0120 (9)−0.0005 (8)
O50.0540 (12)0.0408 (11)0.0513 (12)0.0265 (10)0.0066 (9)0.0150 (9)
O60.0819 (16)0.0477 (12)0.0293 (11)0.0239 (11)−0.0054 (10)0.0069 (9)
N40.0348 (12)0.0362 (12)0.0286 (11)0.0105 (10)0.0052 (9)0.0038 (9)
N50.0394 (12)0.0330 (12)0.0334 (12)0.0108 (10)0.0018 (9)0.0098 (9)
C90.0220 (11)0.0244 (12)0.0295 (12)0.0042 (9)0.0043 (9)0.0045 (10)
C100.0237 (12)0.0293 (13)0.0274 (12)0.0055 (10)0.0019 (9)0.0093 (10)
C110.0253 (12)0.0314 (13)0.0245 (12)0.0063 (10)0.0050 (9)0.0034 (10)
C120.0261 (12)0.0261 (12)0.0333 (13)0.0078 (10)0.0060 (10)0.0049 (10)
C130.0245 (12)0.0291 (12)0.0317 (13)0.0068 (10)0.0020 (10)0.0110 (10)
C140.0257 (12)0.0301 (13)0.0260 (12)0.0039 (10)0.0047 (9)0.0048 (10)
C150.0259 (12)0.0271 (12)0.0318 (13)0.0065 (10)0.0072 (10)0.0057 (10)
O1W0.516 (15)0.093 (4)0.240 (8)0.075 (6)0.084 (9)0.065 (4)
O2W1.00 (3)0.072 (3)0.178 (6)−0.018 (11)−0.117 (16)0.013 (4)

Geometric parameters (Å, °)

O1—C151.272 (3)C4—C71.487 (4)
O2—C151.241 (3)C5—C61.366 (3)
O3—N41.226 (3)C6—C81.490 (4)
O4—N41.224 (3)C5—H50.9499
O5—N51.218 (3)C7—H7C0.9802
O6—N51.224 (3)C7—H7A0.9801
O1W—H1W0.8562C7—H7B0.9797
O1W—H2W0.8633C8—H8B0.9799
O2W—H4W0.9051C8—H8C0.9797
O2W—H3W0.8801C8—H8A0.9803
N1—C21.353 (3)C9—C141.389 (3)
N1—C61.360 (3)C9—C151.514 (3)
N2—C21.326 (3)C9—C101.389 (3)
N3—C21.349 (3)C10—C111.386 (3)
N3—C41.336 (3)C11—C121.379 (3)
N1—H10.8796C12—C131.386 (3)
N2—H2B0.8804C13—C141.389 (3)
N2—H2A0.8797C10—H100.9509
N4—C111.469 (3)C12—H120.9492
N5—C131.468 (3)C14—H140.9502
C4—C51.400 (3)
O1···N12.605 (3)C9···C10i3.461 (3)
O1···C83.349 (3)C9···O2iii3.224 (3)
O1···C11i3.211 (3)C9···C9i3.378 (3)
O1W···O2W2.30 (2)C10···C14i3.588 (3)
O1W···O1Wii2.817 (12)C10···C9i3.461 (3)
O1W···O2Wii2.10 (2)C10···C15i3.506 (3)
O2···N22.787 (3)C11···C2iii3.266 (3)
O2···C15iii3.151 (3)C11···O1i3.211 (3)
O2···C9iii3.224 (3)C11···C15i3.355 (3)
O2···C12i3.339 (3)C12···O2i3.339 (3)
O2···C13i3.275 (3)C12···C15i3.457 (3)
O2W···O1Wii2.10 (2)C12···C2iii3.518 (3)
O2W···O1W2.30 (2)C13···O2i3.275 (3)
O3···C6iii3.218 (4)C14···C10i3.588 (3)
O4···O5iv3.070 (3)C15···N13.395 (3)
O4···C4iii3.271 (3)C15···C10i3.506 (3)
O4···C6i3.340 (4)C15···C11i3.355 (3)
O4···N1i3.177 (3)C15···C12i3.457 (3)
O5···C2v3.264 (3)C15···C15iii3.305 (3)
O5···O4iv3.070 (3)C15···O2iii3.151 (3)
O6···C8vi3.290 (3)C4···H2Ax3.0334
O6···C7v3.340 (4)C7···H2Wx2.8424
O6···C4v3.194 (3)C7···H2Ax3.0813
O1···H11.7288C15···H12.5614
O1···H142.5138C15···H2B2.7328
O1W···H3Wii2.7574H1···H8C2.4826
O1W···H3W2.5016H1···O11.7288
O1W···H2Wii2.7104H1···O22.8247
O1W···H102.8265H1···C152.5614
O1W···H4Wii2.4802H1···H2B2.2763
O2···H12.8247H1W···H102.1720
O2···H2B1.9198H1W···O2W2.9005
O2···H102.4637H1W···O22.7096
O2···H1W2.7096H1W···O2Wii2.7495
O2W···H8Avii2.8539H2A···C4x3.0334
O2W···H1W2.9005H2A···C7x3.0813
O2W···H2Wii2.2504H2A···N3x2.1682
O2W···H2W2.1890H2B···O21.9198
O2W···H7Bviii2.9025H2B···H12.2763
O2W···H1Wii2.7495H2B···C152.7328
O3···H3W2.7683H2W···O1Wii2.7104
O3···H5viii2.8895H2W···C7x2.8424
O3···H7Bviii2.6367H2W···O2W2.1890
O3···H102.4242H2W···O2Wii2.2504
O4···H8Ci2.7564H3W···H7Bviii2.4431
O4···H5viii2.6416H3W···O1W2.5016
O4···H122.4213H3W···O1Wii2.7574
O5···H12iv2.6470H3W···O32.7683
O5···H122.4207H4W···O1Wii2.4802
O5···H7Cix2.6965H5···H8B2.4411
O6···H142.4304H5···H7B2.4096
O6···H8Bvi2.7417H5···O4xii2.6416
N1···O4i3.177 (3)H5···O3xii2.8895
N1···O12.605 (3)H7B···O2Wxii2.9025
N1···C153.395 (3)H7B···O3xii2.6367
N2···N3x3.041 (3)H7B···H52.4096
N2···O22.787 (3)H7B···H3Wxii2.4431
N3···N2x3.041 (3)H7C···O5xiii2.6965
N3···N5xi3.189 (3)H8A···O2Wxiv2.8539
N5···C4v3.417 (3)H8B···O6vi2.7417
N5···N3v3.189 (3)H8B···H52.4411
N3···H2Ax2.1682H8C···H12.4826
C2···C12iii3.518 (3)H8C···O4i2.7564
C2···C11iii3.266 (3)H10···O22.4637
C2···O5xi3.264 (3)H10···O32.4242
C4···N5xi3.417 (3)H10···O1W2.8265
C4···O6xi3.194 (3)H10···H1W2.1720
C4···O4iii3.271 (3)H12···O5iv2.6470
C6···O3iii3.218 (4)H12···O52.4207
C6···O4i3.340 (4)H12···O42.4213
C7···O6xi3.340 (4)H14···O62.4304
C8···O6vi3.290 (3)H14···O12.5138
C8···O13.349 (3)
H1W—O1W—H2W105.95H7B—C7—H7C109.53
H3W—O2W—H4W100.59C4—C7—H7B109.45
C2—N1—C6120.5 (2)C4—C7—H7A109.44
C2—N3—C4117.6 (2)H8B—C8—H8C109.45
C6—N1—H1119.74C6—C8—H8B109.50
C2—N1—H1119.71C6—C8—H8A109.44
H2A—N2—H2B119.98H8A—C8—H8C109.41
C2—N2—H2B119.99H8A—C8—H8B109.50
C2—N2—H2A120.02C6—C8—H8C109.53
O3—N4—C11118.3 (2)C10—C9—C15118.94 (19)
O4—N4—C11118.4 (2)C14—C9—C15121.27 (19)
O3—N4—O4123.3 (2)C10—C9—C14119.7 (2)
O6—N5—C13117.7 (2)C9—C10—C11118.9 (2)
O5—N5—C13118.5 (2)N4—C11—C12117.9 (2)
O5—N5—O6123.8 (2)N4—C11—C10118.59 (19)
N1—C2—N3122.4 (2)C10—C11—C12123.5 (2)
N1—C2—N2118.5 (2)C11—C12—C13115.8 (2)
N2—C2—N3119.0 (2)N5—C13—C14119.25 (19)
C5—C4—C7121.4 (2)C12—C13—C14123.1 (2)
N3—C4—C7116.7 (2)N5—C13—C12117.6 (2)
N3—C4—C5121.8 (2)C9—C14—C13118.9 (2)
C4—C5—C6119.1 (2)O1—C15—C9116.30 (19)
N1—C6—C5118.5 (2)O1—C15—O2126.1 (2)
C5—C6—C8124.3 (2)O2—C15—C9117.57 (19)
N1—C6—C8117.2 (2)C11—C10—H10120.58
C6—C5—H5120.51C9—C10—H10120.55
C4—C5—H5120.44C11—C12—H12122.06
H7A—C7—H7C109.42C13—C12—H12122.12
H7A—C7—H7B109.53C13—C14—H14120.45
C4—C7—H7C109.45C9—C14—H14120.62
C6—N1—C2—N2178.0 (2)C4—C5—C6—C8−178.4 (3)
C6—N1—C2—N3−2.6 (4)C4—C5—C6—N10.6 (4)
C2—N1—C6—C51.5 (4)C14—C9—C10—C11−1.2 (3)
C2—N1—C6—C8−179.4 (2)C15—C9—C10—C11175.9 (2)
C4—N3—C2—N11.3 (4)C10—C9—C14—C130.9 (3)
C4—N3—C2—N2−179.3 (2)C15—C9—C14—C13−176.1 (2)
C2—N3—C4—C50.9 (4)C10—C9—C15—O1−176.4 (2)
C2—N3—C4—C7−177.8 (2)C10—C9—C15—O21.6 (3)
O4—N4—C11—C12−0.9 (3)C14—C9—C15—O10.7 (3)
O3—N4—C11—C10−2.4 (3)C14—C9—C15—O2178.7 (2)
O4—N4—C11—C10177.4 (2)C9—C10—C11—N4−177.5 (2)
O3—N4—C11—C12179.4 (2)C9—C10—C11—C120.7 (3)
O5—N5—C13—C14−175.2 (2)N4—C11—C12—C13178.3 (2)
O5—N5—C13—C123.0 (3)C10—C11—C12—C130.1 (3)
O6—N5—C13—C12−176.9 (2)C11—C12—C13—N5−178.6 (2)
O6—N5—C13—C144.9 (3)C11—C12—C13—C14−0.4 (3)
N3—C4—C5—C6−1.9 (4)N5—C13—C14—C9178.0 (2)
C7—C4—C5—C6176.7 (3)C12—C13—C14—C9−0.1 (3)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z; (iii) −x, −y, −z+1; (iv) −x+1, −y−1, −z+1; (v) x, y−1, z; (vi) −x+1, −y, −z+2; (vii) x, y, z−1; (viii) x, y−1, z−1; (ix) x+1, y−1, z; (x) −x, −y+1, −z+1; (xi) x, y+1, z; (xii) x, y+1, z+1; (xiii) x−1, y+1, z; (xiv) x, y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.732.605 (3)174
N2—H2A···N3x0.882.173.041 (3)172
N2—H2B···O20.881.922.787 (3)168

Symmetry codes: (x) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2189).

References

  • Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.
  • Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci.54, 1252–1257. [PubMed]
  • Baskar Raj, S., Muthiah, P. T., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 48–53.
  • Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids Amsterdam: Elsevier.
  • Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J.187, 533–536. [PubMed]
  • Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754. [PubMed]
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Panneerselvam, P., Muthiah, P. T. & Francis, S. (2004). Acta Cryst. E60, o747–o749.
  • Prince, P., Fronczek, F. R. & Gandour, R. D. (1991). Acta Cryst. C47, 895–898.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201–7210.
  • Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2006). Acta Cryst. E62, o3847–o3849.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography