PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m295.
Published online 2008 January 4. doi:  10.1107/S1600536807068146
PMCID: PMC2960283

Di-μ-thio­cyanato-κ4 N:N-bis­({2,4-di­bromo-6-[2-(methyl­amino)ethyl­imino­meth­yl]­phenol­ato-κ3 N,N′,O}nickel(II))

Abstract

The title complex, [Ni2(C11H11Br2N2O)2(NCS)2], is a thio­cyanate-bridged dinuclear nickel(II) complex. The asymmetric unit contains two molecules. Both Ni atoms in each molecule have a square-pyramidal coordination geometry, and each center is bound by one O and two N atoms of one Schiff base ligand and by one N atom of a bridging thio­cyanate ligand, which define the basal planes. N atoms from the bridging thio­cyanate ligands occupy the apical positions.

Related literature

For related literature, see: Arıcı et al. (2005 [triangle]); Hebbachi & Benali-Cherif (2005 [triangle]); Henkel & Krebs (2004 [triangle]); Salmon et al. (2005 [triangle]); Sarı et al. (2006 [triangle]); Tshuva & Lippard (2004 [triangle]); Weston (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m295-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C10H11Br2N2O)2(NCS)2]
  • M r = 451.82
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m295-efi1.jpg
  • a = 9.2040 (18) Å
  • b = 19.833 (4) Å
  • c = 16.319 (3) Å
  • β = 100.71 (3)°
  • V = 2927.0 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 6.92 mm−1
  • T = 293 (2) K
  • 0.43 × 0.40 × 0.38 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.155, T max = 0.178 (expected range = 0.063–0.072)
  • 25095 measured reflections
  • 6938 independent reflections
  • 2858 reflections with I > 2σ(I)
  • R int = 0.139

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.150
  • S = 0.94
  • 6938 reflections
  • 345 parameters
  • H-atom parameters constrained
  • Δρmax = 0.65 e Å−3
  • Δρmin = −0.77 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068146/rn2034sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068146/rn2034Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges Huaihua University for a research grant.

supplementary crystallographic information

Comment

The design of multidentate ligands and their metallosupramolecular chemistry are of great interest (Henkel & Krebs, 2004; Tshuva & Lippard, 2004; Weston, 2005). Schiff base ligands readily lead to the formation of diverse complexes with most metal ions (Arıcı et al., 2005; Salmon et al., 2005; Hebbachi & Benali-Cherif, 2005; Sarı et al., 2006).

The two Ni centers in the title dinuclear nickel(II) complex are doubly-bridged by thiocyanato ligands. Both Ni atoms are five-coordinate and have square pyramidal geometry but both thiocyanate bridges are asymmetric where the distances are 2.643 (8) and 1.973 (8)Å for Ni1···N6 and Ni1—N3 respectively and 2.589 (8) and 1.978 (7)Å for Ni2···N3 and Ni2—N6 respectively. The Ni···Ni distance is 3.268 (3) Å.

Experimental

3,5-Dibromosalicylaldehyde (1.0 mmol, 280.0 mg), N-methylethane-1,2-diamine (1.0 mmol, 74.0 mg), NH4NCS (1.0 mmol, 76.0 mg), and Ni(NO3)2.6H2O (1.0 mmol, 290.8 mg) were dissolved in a 50 ml me thanol solution. The mixture was stirred at reflux for half an hour to give a green solution. After keeping the solution in air for 15 days to allow slow evaporation, green block-like crystals were formed.

Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, N—H distances of 0.91 Å, and with Uiso(H) values set to 1.2Ueq(C,N) and 1.5Ueq(methyl C).

Figures

Fig. 1.
The structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.

Crystal data

[Ni2(C10H11Br2N2O)2(NCS)2]F000 = 1760
Mr = 451.82Dx = 2.051 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
a = 9.2040 (18) ÅCell parameters from 1344 reflections
b = 19.833 (4) Åθ = 2.4–24.5º
c = 16.319 (3) ŵ = 6.92 mm1
β = 100.71 (3)ºT = 293 (2) K
V = 2927.0 (10) Å3Block, green
Z = 80.43 × 0.40 × 0.38 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer6938 independent reflections
Radiation source: fine-focus sealed tube2858 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.139
T = 293(2) Kθmax = 28.3º
ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −12→12
Tmin = 0.155, Tmax = 0.178k = −25→25
25095 measured reflectionsl = −21→21

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.151  w = 1/[σ2(Fo2) + (0.0506P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
6938 reflectionsΔρmax = 0.65 e Å3
345 parametersΔρmin = −0.77 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.59997 (12)0.01132 (5)0.24264 (7)0.0378 (3)
Ni20.61799 (12)0.12004 (5)0.77631 (7)0.0349 (3)
Br10.41051 (12)0.33151 (5)0.43009 (7)0.0685 (4)
Br20.31619 (12)0.05315 (5)0.46208 (6)0.0564 (3)
Br30.36394 (13)0.17932 (5)1.00163 (7)0.0669 (4)
Br40.37706 (12)0.45174 (5)0.90757 (7)0.0644 (3)
S10.8160 (4)−0.18127 (14)0.37004 (19)0.0779 (10)
S20.8415 (4)−0.07194 (15)0.8944 (2)0.0851 (10)
O10.4903 (6)0.0452 (3)0.3223 (4)0.0440 (16)
O20.5198 (6)0.1600 (3)0.8571 (3)0.0468 (16)
N10.6349 (8)0.1003 (3)0.2016 (4)0.045 (2)
N20.6704 (8)−0.0212 (4)0.1394 (4)0.050 (2)
H2A0.6074−0.05430.11640.060*
N30.6368 (8)−0.0765 (4)0.2996 (5)0.049 (2)
N40.6322 (8)0.2040 (3)0.7179 (5)0.047 (2)
N50.6960 (8)0.0799 (3)0.6800 (4)0.0449 (19)
H5A0.64730.04040.66600.054*
N60.6537 (9)0.0353 (4)0.8409 (5)0.049 (2)
C10.5295 (10)0.1639 (4)0.3041 (5)0.041 (2)
C20.4755 (10)0.1078 (4)0.3426 (5)0.041 (2)
C30.3982 (9)0.1240 (4)0.4082 (5)0.040 (2)
C40.3789 (10)0.1898 (4)0.4331 (6)0.047 (2)
H40.32750.19860.47590.056*
C50.4366 (10)0.2416 (4)0.3938 (6)0.045 (2)
C60.5112 (10)0.2302 (4)0.3303 (6)0.052 (3)
H60.54970.26620.30460.062*
C70.6038 (10)0.1557 (4)0.2333 (6)0.048 (3)
H70.63110.19500.20880.057*
C80.7089 (11)0.0998 (5)0.1295 (6)0.057 (3)
H8A0.81530.09750.14750.068*
H8B0.68480.14030.09630.068*
C90.6515 (11)0.0371 (5)0.0789 (6)0.060 (3)
H9A0.54820.04260.05370.072*
H9B0.70760.02930.03510.072*
C100.7144 (10)−0.1202 (5)0.3285 (6)0.045 (2)
C110.5255 (9)0.2750 (4)0.8123 (6)0.041 (2)
C120.4913 (9)0.2237 (4)0.8649 (5)0.037 (2)
C130.4210 (10)0.2452 (4)0.9302 (5)0.045 (2)
C140.3902 (10)0.3114 (4)0.9432 (6)0.048 (3)
H140.34490.32340.98750.057*
C150.4267 (9)0.3604 (4)0.8902 (6)0.043 (2)
C160.4953 (10)0.3435 (4)0.8254 (6)0.047 (2)
H160.52160.37660.79060.057*
C170.5928 (10)0.2625 (5)0.7395 (6)0.052 (3)
H170.60810.29920.70660.062*
C180.6914 (11)0.1982 (4)0.6398 (6)0.059 (3)
H18A0.79730.20590.65020.071*
H18B0.64420.23050.59870.071*
C190.6558 (11)0.1265 (4)0.6100 (6)0.056 (3)
H19A0.55100.12260.58720.067*
H19B0.71030.11530.56640.067*
C200.8556 (10)0.0652 (5)0.6983 (6)0.061 (3)
H20A0.87250.02390.72930.091*
H20B0.90680.10140.73050.091*
H20C0.89140.06070.64690.091*
C210.7334 (10)−0.0092 (5)0.8631 (6)0.044 (2)
C220.8217 (10)−0.0497 (5)0.1533 (6)0.071 (3)
H22A0.8432−0.06570.10130.107*
H22B0.8283−0.08650.19210.107*
H22C0.8917−0.01540.17550.107*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0465 (8)0.0318 (6)0.0374 (7)0.0009 (5)0.0140 (6)0.0000 (5)
Ni20.0449 (7)0.0264 (6)0.0357 (7)0.0005 (5)0.0140 (6)−0.0007 (5)
Br10.0776 (8)0.0362 (6)0.0944 (9)0.0020 (5)0.0229 (7)−0.0143 (6)
Br20.0783 (8)0.0426 (6)0.0560 (7)−0.0078 (5)0.0329 (6)−0.0048 (5)
Br30.0927 (9)0.0551 (7)0.0637 (7)0.0114 (6)0.0426 (7)0.0071 (6)
Br40.0686 (8)0.0395 (6)0.0873 (9)0.0079 (5)0.0202 (7)−0.0125 (6)
S10.101 (2)0.0635 (19)0.069 (2)0.0369 (18)0.0174 (19)0.0090 (16)
S20.088 (2)0.068 (2)0.106 (3)0.0307 (18)0.034 (2)0.0328 (19)
O10.056 (4)0.031 (3)0.048 (4)−0.004 (3)0.017 (3)−0.003 (3)
O20.063 (4)0.037 (4)0.046 (4)0.005 (3)0.023 (3)0.001 (3)
N10.059 (5)0.036 (4)0.043 (5)0.003 (4)0.015 (4)−0.001 (4)
N20.051 (5)0.047 (5)0.053 (5)0.008 (4)0.014 (4)−0.003 (4)
N30.053 (6)0.034 (4)0.058 (6)0.003 (4)0.009 (4)−0.006 (4)
N40.066 (6)0.032 (4)0.050 (5)−0.007 (4)0.027 (4)0.001 (4)
N50.052 (5)0.043 (5)0.043 (5)−0.003 (4)0.018 (4)−0.002 (4)
N60.064 (6)0.038 (5)0.044 (5)0.003 (4)0.012 (4)0.008 (4)
C10.047 (6)0.035 (5)0.041 (6)−0.004 (4)0.006 (5)−0.005 (4)
C20.045 (6)0.042 (6)0.032 (6)−0.002 (5)−0.003 (5)0.001 (4)
C30.048 (6)0.029 (5)0.043 (6)−0.007 (4)0.009 (5)0.005 (4)
C40.048 (6)0.043 (6)0.049 (6)0.005 (5)0.008 (5)−0.006 (5)
C50.051 (6)0.029 (5)0.052 (7)0.014 (5)−0.001 (5)0.005 (5)
C60.052 (7)0.038 (6)0.064 (7)−0.007 (5)0.004 (6)0.002 (5)
C70.056 (7)0.039 (6)0.048 (7)−0.001 (5)0.010 (5)0.002 (5)
C80.073 (8)0.055 (6)0.049 (7)−0.002 (5)0.031 (6)0.008 (5)
C90.077 (8)0.058 (7)0.047 (7)−0.006 (6)0.015 (6)0.008 (6)
C100.040 (6)0.053 (6)0.043 (6)−0.009 (5)0.012 (5)−0.007 (5)
C110.038 (6)0.033 (5)0.052 (6)−0.004 (4)0.007 (5)−0.011 (5)
C120.040 (6)0.034 (5)0.035 (6)−0.008 (4)−0.001 (5)0.000 (4)
C130.054 (6)0.046 (6)0.036 (6)0.007 (5)0.014 (5)0.003 (4)
C140.065 (7)0.038 (6)0.044 (6)0.001 (5)0.019 (5)−0.012 (5)
C150.033 (6)0.039 (5)0.057 (7)0.006 (4)0.009 (5)−0.018 (5)
C160.056 (7)0.032 (5)0.052 (7)0.000 (5)0.007 (5)0.005 (5)
C170.072 (7)0.040 (6)0.046 (6)0.001 (5)0.017 (6)0.012 (5)
C180.086 (8)0.044 (6)0.055 (7)−0.007 (5)0.032 (6)−0.003 (5)
C190.069 (7)0.045 (6)0.059 (7)−0.006 (5)0.025 (6)0.003 (5)
C200.055 (7)0.063 (7)0.070 (8)−0.003 (6)0.025 (6)−0.017 (6)
C210.046 (6)0.046 (6)0.039 (6)−0.008 (5)0.010 (5)0.005 (5)
C220.056 (7)0.078 (8)0.089 (9)0.018 (6)0.040 (7)0.002 (7)

Geometric parameters (Å, °)

Ni1—O11.911 (6)C2—C31.428 (11)
Ni1—N11.934 (7)C3—C41.388 (11)
Ni1—N22.019 (7)C4—C51.370 (11)
Ni1—N31.973 (8)C4—H40.9300
Ni1—N6i2.643 (8)C5—C61.365 (12)
Ni2—O21.904 (5)C6—H60.9300
Ni2—N3i2.589 (8)C7—H70.9300
Ni2—N41.935 (7)C8—C91.532 (12)
Ni2—N61.978 (7)C8—H8A0.9700
Ni2—N52.010 (7)C8—H8B0.9700
Br1—C51.907 (8)C9—H9A0.9700
Br2—C31.888 (8)C9—H9B0.9700
Br3—C131.889 (9)C11—C121.404 (11)
Br4—C151.902 (8)C11—C161.410 (11)
S1—C101.602 (10)C11—C171.460 (12)
S2—C211.617 (10)C12—C131.412 (11)
O1—C21.299 (9)C13—C141.369 (11)
O2—C121.301 (9)C14—C151.383 (11)
N1—C71.270 (10)C14—H140.9300
N1—C81.466 (10)C15—C161.372 (11)
N2—C221.481 (10)C16—H160.9300
N2—C91.509 (10)C17—H170.9300
N2—H2A0.9100C18—C191.519 (11)
N3—C101.166 (10)C18—H18A0.9700
N4—C171.283 (10)C18—H18B0.9700
N4—C181.481 (10)C19—H19A0.9700
N5—C191.462 (10)C19—H19B0.9700
N5—C201.472 (10)C20—H20A0.9600
N5—H5A0.9100C20—H20B0.9600
N6—C211.161 (10)C20—H20C0.9600
C1—C61.403 (11)C22—H22A0.9600
C1—C21.412 (11)C22—H22B0.9600
C1—C71.457 (11)C22—H22C0.9600
O1—Ni1—N193.3 (3)N1—C7—H7116.8
O1—Ni1—N393.2 (3)C1—C7—H7116.8
N1—Ni1—N3160.5 (3)N1—C8—C9105.8 (7)
O1—Ni1—N2166.4 (3)N1—C8—H8A110.6
N1—Ni1—N284.4 (3)C9—C8—H8A110.6
N3—Ni1—N293.3 (3)N1—C8—H8B110.6
O1—Ni1—N6i86.9 (3)C9—C8—H8B110.6
N1—Ni1—N6i109.2 (3)H8A—C8—H8B108.7
N2—Ni1—N6i81.3 (3)N2—C9—C8106.5 (8)
N3—Ni1—N6i89.5 (3)N2—C9—H9A110.4
O2—Ni2—N493.9 (3)C8—C9—H9A110.4
O2—Ni2—N692.2 (3)N2—C9—H9B110.4
N4—Ni2—N6166.8 (3)C8—C9—H9B110.4
O2—Ni2—N5172.3 (3)H9A—C9—H9B108.6
N4—Ni2—N583.6 (3)N3—C10—S1177.8 (9)
N6—Ni2—N591.8 (3)C12—C11—C16122.2 (8)
O2—Ni2—N3i88.0 (3)C12—C11—C17123.5 (8)
N4—Ni2—N3i101.0 (3)C16—C11—C17114.4 (8)
N5—Ni2—N3i85.2 (3)O2—C12—C11124.9 (8)
N6—Ni2—N3i91.0 (3)O2—C12—C13119.7 (8)
C2—O1—Ni1127.1 (6)C11—C12—C13115.4 (8)
C12—O2—Ni2127.0 (5)C14—C13—C12123.0 (8)
C7—N1—C8120.3 (8)C14—C13—Br3118.6 (7)
C7—N1—Ni1125.8 (6)C12—C13—Br3118.4 (6)
C8—N1—Ni1113.8 (6)C13—C14—C15119.7 (8)
C22—N2—C9112.5 (7)C13—C14—H14120.1
C22—N2—Ni1115.6 (6)C15—C14—H14120.1
C9—N2—Ni1106.6 (5)C16—C15—C14120.7 (8)
C22—N2—H2A107.2C16—C15—Br4120.4 (7)
C9—N2—H2A107.2C14—C15—Br4118.9 (6)
Ni1—N2—H2A107.2C15—C16—C11119.0 (8)
C10—N3—Ni1152.4 (7)C15—C16—H16120.5
C17—N4—C18118.3 (7)C11—C16—H16120.5
C17—N4—Ni2126.4 (6)N4—C17—C11124.1 (8)
C18—N4—Ni2115.2 (6)N4—C17—H17117.9
C19—N5—C20112.4 (7)C11—C17—H17117.9
C19—N5—Ni2106.6 (5)N4—C18—C19104.9 (7)
C20—N5—Ni2114.1 (6)N4—C18—H18A110.8
C19—N5—H5A107.9C19—C18—H18A110.8
C20—N5—H5A107.9N4—C18—H18B110.8
Ni2—N5—H5A107.9C19—C18—H18B110.8
C21—N6—Ni2147.6 (7)H18A—C18—H18B108.9
C6—C1—C2122.1 (8)N5—C19—C18109.5 (8)
C6—C1—C7116.5 (8)N5—C19—H19A109.8
C2—C1—C7121.4 (8)C18—C19—H19A109.8
O1—C2—C1125.3 (8)N5—C19—H19B109.8
O1—C2—C3119.8 (8)C18—C19—H19B109.8
C1—C2—C3115.0 (8)H19A—C19—H19B108.2
C4—C3—C2122.7 (8)N5—C20—H20A109.5
C4—C3—Br2118.6 (7)N5—C20—H20B109.5
C2—C3—Br2118.7 (6)H20A—C20—H20B109.5
C5—C4—C3119.1 (8)N5—C20—H20C109.5
C5—C4—H4120.4H20A—C20—H20C109.5
C3—C4—H4120.4H20B—C20—H20C109.5
C6—C5—C4121.6 (8)N6—C21—S2178.9 (9)
C6—C5—Br1120.1 (7)N2—C22—H22A109.5
C4—C5—Br1118.3 (7)N2—C22—H22B109.5
C5—C6—C1119.5 (9)H22A—C22—H22B109.5
C5—C6—H6120.2N2—C22—H22C109.5
C1—C6—H6120.2H22A—C22—H22C109.5
N1—C7—C1126.3 (8)H22B—C22—H22C109.5

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.912.483.269 (9)146
N5—H5A···O1i0.912.153.012 (9)158
N5—H5A···Br2i0.912.863.500 (7)129

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2034).

References

  • Arıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919–m921.
  • Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01). SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hebbachi, R. & Benali-Cherif, N. (2005). Acta Cryst. E61, m1188–m1190.
  • Henkel, G. & Krebs, B. (2004). Chem. Rev.104, 801–824. [PubMed]
  • Salmon, L., Thuéry, P. & Ephritikhine, M. (2005). Acta Cryst. E61, m2607–m2609.
  • Sarı, M., Atakol, O., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m563–m565.
  • Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev.104, 987–1012. [PubMed]
  • Weston, J. (2005). Chem. Rev.105, 2151–2174. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography