PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o411.
Published online 2008 January 9. doi:  10.1107/S1600536808000159
PMCID: PMC2960281

2,4-Diamino-6-methyl-1,3,5-triazine ethanol solvate

Abstract

The crystal structure of the title compound, C4H7N5·C2H6O, is determined by extensive hydrogen bonding. A sequence of dimeric associations, formed by N—H(amino)(...)N(ring), connects the triazine rings into a mol­ecular tape. Mol­ecules are linked into a supra­molecular structure by N—H(...)O and O—H(...)O hydrogen bonds. The asymmetric unit consists of two formula units.

Related literature

For general background, see: Sebenik et al. (1989 [triangle]); Tashiro & Oiwa (1981 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o411-scheme1.jpg

Experimental

Crystal data

  • C4H7N5·C2H6O
  • M r = 171.21
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o411-efi1.jpg
  • a = 8.3860 (6) Å
  • b = 9.1514 (6) Å
  • c = 11.9104 (9) Å
  • α = 88.703 (1)°
  • β = 87.614 (2)°
  • γ = 76.668 (2)°
  • V = 888.56 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 273 (2) K
  • 0.34 × 0.26 × 0.21 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.975, T max = 0.985
  • 7627 measured reflections
  • 3111 independent reflections
  • 2619 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.118
  • S = 1.07
  • 3111 reflections
  • 223 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000159/bq2061sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000159/bq2061Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Nomarch Education Foundation of Guizhou, China (No. 2004–07).

supplementary crystallographic information

Comment

Triazine compounds are used in pharmaceutical industry as coupling agents for the synthesis of peptides and as side chain of antibiotics, as well as in formulating bactericides and fungicides. 2,4-Diamino-6-methyl-1,3,5-triazine (acetoguanamine) is used as an intermediate for pharmaceuticals and as a modifier and flexibilizer of formaldehyde resins (Sebenik et al., 1989, Tashiro et al., 1981).

The crystal structure of the title compound (Fig. 1) consists of triazine and solvate ethanol molecule. The amino groups are coplanar with the ring plane, the dihedral angle between the triazine ring (C2,N2,C4,N1,C3,N3) and the ring (C8,N7,C9,N8,C10,N6) is 12.73 (7)°. A lot of hydrogen bonds are observed (Table 1), each NH2 group acts as a donor in hydrogen bond with the ring nitrogen atoms of neighboring molecules, these contacts and the cross-linking interactions stabilize the crystal packing.

Experimental

2,4-diamino-6-methyl-1,3,5-triazine (0.625 g, 0.05 mol) was added to a stirred solvent of ethanol (100 ml) at 50°C for 3 h. After cooling to room temperature, the mixture was filtered. The filtrate was set aside for one week to obtain colorless crystals.

Refinement

Water H atoms were located in a difference Fourier map and refined as riding in their as-found positions relative to O atoms with Uiso(H) = 1.2Ueq(O). All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and Uiso(H) = 1.2–1.5 Ueq(C,N).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C4H7N5·C2H6OZ = 4
Mr = 171.21F000 = 368.0
Triclinic, P1Dx = 1.280 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.3860 (6) ÅCell parameters from 3111 reflections
b = 9.1514 (6) Åθ = 1.7–25.0º
c = 11.9104 (9) ŵ = 0.09 mm1
α = 88.703 (1)ºT = 273 (2) K
β = 87.614 (2)ºBlock, colorless
γ = 76.668 (2)º0.34 × 0.26 × 0.21 mm
V = 888.56 (11) Å3

Data collection

Bruker CCD area-detector diffractometer3111 independent reflections
Radiation source: fine-focus sealed tube2619 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.017
T = 273(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −9→9
Tmin = 0.975, Tmax = 0.985k = −10→10
7627 measured reflectionsl = −12→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.118  w = 1/[σ2(Fo2) + (0.0597P)2 + 0.2811P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3111 reflectionsΔρmax = 0.25 e Å3
223 parametersΔρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0454 (2)0.41963 (19)0.15635 (15)0.0388 (4)
H1A−0.06530.47780.15270.058*
H1B0.08920.39460.08170.058*
H1C0.11100.47700.19200.058*
C20.04756 (19)0.27874 (17)0.22268 (13)0.0290 (4)
C3−0.07229 (18)0.14537 (17)0.34835 (13)0.0258 (3)
C40.18337 (18)0.04532 (17)0.27722 (13)0.0268 (3)
C50.6644 (3)0.2978 (3)0.0124 (2)0.0651 (6)
H5A0.73940.20120.00890.098*
H5B0.72120.37160.03480.098*
H5C0.62000.3244−0.06020.098*
C60.5286 (2)0.2917 (2)0.09584 (17)0.0486 (5)
H6A0.57300.26280.16910.058*
H6B0.45480.39000.10190.058*
C70.3737 (2)0.18852 (18)0.49621 (15)0.0342 (4)
H7A0.41720.11320.44120.051*
H7B0.26830.17650.52410.051*
H7C0.44690.17800.55720.051*
C80.35597 (18)0.34072 (16)0.44340 (12)0.0254 (3)
C90.47170 (18)0.50943 (16)0.34763 (12)0.0244 (3)
C100.20147 (18)0.56977 (16)0.39979 (12)0.0255 (3)
N10.05944 (15)0.02890 (14)0.34824 (11)0.0279 (3)
N20.18531 (16)0.17023 (15)0.21443 (11)0.0299 (3)
N3−0.08554 (15)0.27267 (14)0.28518 (11)0.0284 (3)
N4−0.20112 (16)0.13534 (15)0.41484 (11)0.0323 (3)
H4A−0.19840.05630.45590.039*
H4B−0.28710.20790.41670.039*
N60.20797 (15)0.43256 (14)0.44771 (11)0.0273 (3)
N70.49186 (15)0.37128 (13)0.39648 (10)0.0268 (3)
N80.32886 (15)0.61343 (14)0.34805 (11)0.0274 (3)
N90.05530 (15)0.66659 (15)0.40412 (12)0.0336 (3)
H9A0.04420.75460.37420.040*
H9B−0.02760.64090.43680.040*
N100.60412 (15)0.54140 (15)0.29698 (11)0.0309 (3)
H10A0.59790.62760.26500.037*
H10B0.69590.47590.29620.037*
O10.44204 (16)0.18580 (16)0.06094 (10)0.0475 (4)
H10.36070.18970.10240.071*
C110.0989 (3)0.1326 (3)0.89654 (19)0.0599 (6)
H11A0.13240.11240.97250.090*
H11B0.03210.06550.87690.090*
H11C0.03700.23440.89000.090*
C120.2460 (2)0.1100 (2)0.81971 (17)0.0495 (5)
H12A0.30360.00530.82370.059*
H12B0.21030.13100.74340.059*
N50.31467 (16)−0.06868 (15)0.26948 (12)0.0353 (3)
H5D0.3180−0.14900.30910.042*
H5E0.3961−0.06190.22490.042*
O20.35702 (16)0.19983 (16)0.84251 (11)0.0461 (3)
H20.37690.19310.90950.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0392 (10)0.0326 (9)0.0423 (10)−0.0051 (7)0.0017 (8)0.0095 (8)
C20.0299 (8)0.0272 (8)0.0294 (8)−0.0059 (7)−0.0023 (6)0.0018 (6)
C30.0241 (8)0.0242 (8)0.0282 (8)−0.0041 (6)−0.0011 (6)−0.0001 (6)
C40.0250 (8)0.0267 (8)0.0281 (8)−0.0051 (6)−0.0004 (6)0.0010 (6)
C50.0531 (13)0.0762 (16)0.0747 (16)−0.0344 (12)0.0045 (11)0.0046 (12)
C60.0485 (11)0.0488 (11)0.0516 (12)−0.0174 (9)0.0003 (9)−0.0063 (9)
C70.0298 (9)0.0250 (8)0.0454 (10)−0.0028 (7)0.0032 (7)0.0040 (7)
C80.0248 (8)0.0233 (8)0.0269 (8)−0.0032 (6)0.0004 (6)−0.0019 (6)
C90.0251 (8)0.0230 (7)0.0242 (8)−0.0037 (6)0.0001 (6)−0.0011 (6)
C100.0237 (8)0.0244 (8)0.0270 (8)−0.0028 (6)−0.0012 (6)−0.0002 (6)
N10.0247 (7)0.0251 (7)0.0313 (7)−0.0019 (5)0.0038 (5)0.0036 (5)
N20.0293 (7)0.0285 (7)0.0311 (7)−0.0062 (6)0.0035 (5)0.0031 (6)
N30.0257 (7)0.0258 (7)0.0321 (7)−0.0030 (5)0.0003 (5)0.0039 (5)
N40.0258 (7)0.0250 (7)0.0419 (8)0.0007 (5)0.0089 (6)0.0058 (6)
N60.0237 (7)0.0234 (7)0.0334 (7)−0.0032 (5)0.0008 (5)0.0007 (5)
N70.0241 (7)0.0228 (7)0.0312 (7)−0.0013 (5)0.0016 (5)0.0015 (5)
N80.0251 (7)0.0239 (7)0.0309 (7)−0.0016 (5)0.0009 (5)0.0026 (5)
N90.0223 (7)0.0269 (7)0.0478 (9)0.0005 (5)0.0038 (6)0.0078 (6)
N100.0237 (7)0.0253 (7)0.0411 (8)−0.0017 (5)0.0039 (6)0.0054 (6)
O10.0477 (8)0.0614 (9)0.0398 (7)−0.0274 (7)0.0112 (6)−0.0083 (6)
C110.0513 (12)0.0746 (15)0.0606 (14)−0.0303 (11)0.0095 (10)−0.0034 (11)
C120.0453 (11)0.0601 (13)0.0463 (11)−0.0190 (10)0.0023 (9)−0.0044 (9)
N50.0260 (7)0.0298 (7)0.0455 (8)0.0005 (6)0.0105 (6)0.0072 (6)
O20.0461 (8)0.0581 (8)0.0391 (7)−0.0241 (6)0.0010 (6)0.0112 (6)

Geometric parameters (Å, °)

C1—C21.494 (2)C8—N71.3327 (19)
C1—H1A0.9600C9—N101.3300 (19)
C1—H1B0.9600C9—N81.3471 (19)
C1—H1C0.9600C9—N71.3571 (19)
C2—N31.327 (2)C10—N91.3364 (19)
C2—N21.340 (2)C10—N81.3459 (19)
C3—N41.332 (2)C10—N61.3580 (19)
C3—N11.3466 (19)N4—H4A0.8600
C3—N31.3576 (19)N4—H4B0.8600
C4—N51.332 (2)N9—H9A0.8600
C4—N11.346 (2)N9—H9B0.8600
C4—N21.355 (2)N10—H10A0.8600
C5—C61.490 (3)N10—H10B0.8600
C5—H5A0.9600O1—H10.8200
C5—H5B0.9600C11—C121.482 (3)
C5—H5C0.9600C11—H11A0.9600
C6—O11.417 (2)C11—H11B0.9600
C6—H6A0.9700C11—H11C0.9600
C6—H6B0.9700C12—O21.415 (2)
C7—C81.494 (2)C12—H12A0.9700
C7—H7A0.9600C12—H12B0.9700
C7—H7B0.9600N5—H5D0.8600
C7—H7C0.9600N5—H5E0.8600
C8—N61.3285 (19)O2—H20.8200
C2—C1—H1A109.5N10—C9—N7116.38 (13)
C2—C1—H1B109.5N8—C9—N7124.41 (13)
H1A—C1—H1B109.5N9—C10—N8118.57 (13)
C2—C1—H1C109.5N9—C10—N6116.26 (13)
H1A—C1—H1C109.5N8—C10—N6125.17 (13)
H1B—C1—H1C109.5C4—N1—C3114.56 (13)
N3—C2—N2125.90 (14)C2—N2—C4114.89 (13)
N3—C2—C1117.42 (14)C2—N3—C3114.50 (13)
N2—C2—C1116.68 (14)C3—N4—H4A120.0
N4—C3—N1117.82 (13)C3—N4—H4B120.0
N4—C3—N3116.89 (13)H4A—N4—H4B120.0
N1—C3—N3125.28 (13)C8—N6—C10114.35 (12)
N5—C4—N1117.59 (14)C8—N7—C9114.99 (12)
N5—C4—N2117.68 (13)C10—N8—C9114.81 (12)
N1—C4—N2124.72 (14)C10—N9—H9A120.0
C6—C5—H5A109.5C10—N9—H9B120.0
C6—C5—H5B109.5H9A—N9—H9B120.0
H5A—C5—H5B109.5C9—N10—H10A120.0
C6—C5—H5C109.5C9—N10—H10B120.0
H5A—C5—H5C109.5H10A—N10—H10B120.0
H5B—C5—H5C109.5C6—O1—H1109.5
O1—C6—C5109.36 (17)C12—C11—H11A109.5
O1—C6—H6A109.8C12—C11—H11B109.5
C5—C6—H6A109.8H11A—C11—H11B109.5
O1—C6—H6B109.8C12—C11—H11C109.5
C5—C6—H6B109.8H11A—C11—H11C109.5
H6A—C6—H6B108.3H11B—C11—H11C109.5
C8—C7—H7A109.5O2—C12—C11114.80 (17)
C8—C7—H7B109.5O2—C12—H12A108.6
H7A—C7—H7B109.5C11—C12—H12A108.6
C8—C7—H7C109.5O2—C12—H12B108.6
H7A—C7—H7C109.5C11—C12—H12B108.6
H7B—C7—H7C109.5H12A—C12—H12B107.5
N6—C8—N7126.22 (13)C4—N5—H5D120.0
N6—C8—C7117.53 (13)C4—N5—H5E120.0
N7—C8—C7116.25 (13)H5D—N5—H5E120.0
N10—C9—N8119.21 (13)C12—O2—H2109.5
N5—C4—N1—C3−177.19 (14)N7—C8—N6—C10−0.8 (2)
N2—C4—N1—C33.9 (2)C7—C8—N6—C10178.93 (13)
N4—C3—N1—C4178.53 (14)N9—C10—N6—C8−178.84 (13)
N3—C3—N1—C4−0.9 (2)N8—C10—N6—C82.1 (2)
N3—C2—N2—C4−0.2 (2)N6—C8—N7—C9−1.2 (2)
C1—C2—N2—C4178.97 (14)C7—C8—N7—C9179.03 (13)
N5—C4—N2—C2177.66 (14)N10—C9—N7—C8−177.94 (13)
N1—C4—N2—C2−3.4 (2)N8—C9—N7—C82.4 (2)
N2—C2—N3—C32.9 (2)N9—C10—N8—C9179.85 (13)
C1—C2—N3—C3−176.34 (14)N6—C10—N8—C9−1.1 (2)
N4—C3—N3—C2178.33 (14)N10—C9—N8—C10179.00 (13)
N1—C3—N3—C2−2.3 (2)N7—C9—N8—C10−1.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4B···N7i0.862.112.9666 (18)171
N5—H5D···N8ii0.862.193.0132 (19)159
N5—H5E···O2iii0.862.293.0071 (19)142
N10—H10A···O2iv0.862.102.9337 (18)163
O2—H2···O1v0.821.902.7185 (18)174

Symmetry codes: (i) x−1, y, z; (ii) x, y−1, z; (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2061).

References

  • Bruker (2002). SMART and SAINT Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Bruker (2005). SADABS Version 1.22. Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sebenik, A., Osredkar, U. & Zigon, M. (1989). Polym. Bull.22, 155–161.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tashiro, T. & Oiwa, M. (1981). J. Polym. Sci. Polym. Chem.19, 645–654.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography