PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o387.
Published online 2008 January 9. doi:  10.1107/S1600536807068730
PMCID: PMC2960277

2,5-Dibenzoyl­benzene-1,4-diaminium dichloride

Abstract

The asymmetric unit of the title compound, C20H18N2O2 2+·2Cl, is composed of one-half of the 2,5-dibenzoyl­benzene-1,4-diaminium dication, located on a centre of inversion, and one Cl ion. The dihedral angle between the central benzene ring and the benzoyl phenyl ring is 53.3 (2)°. In the crystal structure, ions are linked to form a two-dimensional network parallel to the (10An external file that holds a picture, illustration, etc.
Object name is e-64-0o387-efi1.jpg) plane by N—H(...)Cl hydrogen bonds.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For general background, see: Antoniadis et al. (1994 [triangle]); Imai et al. (1975 [triangle]); Kolosov et al. (2002 [triangle]); Tonzola et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o387-scheme1.jpg

Experimental

Crystal data

  • C20H18N2O2 2+·2Cl
  • M r = 389.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o387-efi2.jpg
  • a = 12.373 (3) Å
  • b = 5.195 (1) Å
  • c = 14.315 (3) Å
  • β = 104.46 (3)°
  • V = 891.0 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 298 (2) K
  • 0.40 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.862, T max = 0.963
  • 1754 measured reflections
  • 1754 independent reflections
  • 1232 reflections with I > 2σ(I)
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.162
  • S = 1.08
  • 1754 reflections
  • 130 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Bruker, 2000 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068730/ci2546sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068730/ci2546Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the innovation fund of Jiangsu Province, China. The authors thank the Center for Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

2,5-Dibenzoyl-1,4-phenylenediamine (DBPDA) is one of the important monomers, being utilized to synthesize organic semiconductors and conjugated polymers containing anthrazoline unit (Tonzola et al., 2003), which are of wide current interest for applications in electronic and optoelectronic devices including light-emitting diodes (Kolosov et al., 2002), thin film transistors, and photovoltaic cells (Antoniadis et al., 1994). We report here the crystal structure of the title compound.

The asymmetric unit is composed of one-half of the 2,5-dibenzoyl-1,4-phenylenediaminium dication located on a centre of inversion, and one chloride ion (Fig.1). The bond lengths and angles are within normal ranges (Allen et al., 1987). The dihedral angle between the C1—C6 and C8—C10/C8A—C10A rings is 53.3 (2)°.

In the crystal structure, molecules are connected together by N—H···Cl hydrogen bonds (Table 1) to form a two-dimensional network parallel to the (1 0 1) plane (Fig. 2).

Experimental

2,5-Dibenzoyl-1,4-phenylenediamine was synthesized as reported elsewhere (Imai et al., 1975). Single crystals suitable for X-ray diffraction were obtained by dissolving the compound (2.0 g, 6.3 mmol) in hydrochloric acid (50 ml, 1.0 mol/l) and allowing the solution to evaporate at room temperature for about 25 d.

Refinement

N-bound H atoms were located in a difference map and refined with the N—H distances restrained to be equal. C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 40% probability displacement ellipsoids. Atoms labelled with the suffix a are generated by the symmetry operations (1 - x, 1 - y, -z). Hydrogen bonds are shown as dashed lines.
Fig. 2.
Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C20H18N2O22+·2ClF000 = 404
Mr = 389.26Dx = 1.451 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.373 (3) Åθ = 9–13º
b = 5.195 (1) ŵ = 0.38 mm1
c = 14.315 (3) ÅT = 298 (2) K
β = 104.46 (3)ºBlock, colourless
V = 891.0 (4) Å30.40 × 0.10 × 0.10 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer1232 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
Monochromator: graphiteθmax = 26.0º
T = 298(2) Kθmin = 2.0º
ω/2θ scansh = −15→14
Absorption correction: ψ scan(North et al., 1968)k = 0→6
Tmin = 0.862, Tmax = 0.963l = 0→17
1754 measured reflections3 standard reflections
1754 independent reflections every 200 reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162  w = 1/[σ2(Fo2) + (0.0704P)2 + 0.5685P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1754 reflectionsΔρmax = 0.31 e Å3
130 parametersΔρmin = −0.27 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2971 (2)0.0151 (5)−0.11097 (19)0.0386 (7)
N10.6436 (3)0.5247 (6)0.1879 (2)0.0265 (7)
H1N0.635 (4)0.655 (7)0.224 (3)0.073 (17)*
H2N0.633 (3)0.394 (7)0.222 (3)0.045 (12)*
H3N0.714 (2)0.517 (8)0.188 (3)0.040 (12)*
C10.1700 (4)0.2318 (8)0.1666 (3)0.0438 (10)
H10.16880.34590.21640.053*
C20.1003 (3)0.0237 (9)0.1510 (3)0.0450 (10)
H20.0508−0.00080.18960.054*
C30.1022 (3)−0.1489 (8)0.0793 (3)0.0442 (10)
H30.0558−0.29220.07060.053*
C40.1732 (3)−0.1104 (7)0.0200 (3)0.0372 (9)
H40.1731−0.2260−0.02960.045*
C50.2448 (3)0.1002 (7)0.0339 (3)0.0274 (8)
C60.2430 (3)0.2733 (7)0.1081 (3)0.0352 (9)
H60.29020.41540.11840.042*
C70.3141 (3)0.1395 (6)−0.0361 (2)0.0262 (8)
C80.4074 (3)0.3311 (6)−0.0166 (2)0.0230 (7)
C90.4812 (3)0.3497 (7)0.0737 (2)0.0250 (7)
H90.46970.24840.12390.030*
C100.5707 (3)0.5142 (6)0.0907 (2)0.0230 (7)
Cl10.59773 (8)0.02097 (17)0.29914 (7)0.0350 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0478 (16)0.0345 (15)0.0357 (14)−0.0127 (13)0.0148 (12)−0.0065 (12)
N10.0268 (15)0.0226 (16)0.0272 (15)−0.0029 (14)0.0015 (12)0.0026 (14)
C10.054 (3)0.037 (2)0.047 (2)−0.004 (2)0.025 (2)−0.008 (2)
C20.039 (2)0.051 (3)0.050 (2)0.002 (2)0.0205 (19)0.010 (2)
C30.041 (2)0.035 (2)0.060 (3)−0.0108 (19)0.019 (2)0.004 (2)
C40.048 (2)0.026 (2)0.040 (2)−0.0095 (18)0.0165 (18)−0.0018 (17)
C50.0274 (18)0.0209 (17)0.0343 (19)−0.0024 (14)0.0082 (15)0.0009 (15)
C60.042 (2)0.0258 (19)0.039 (2)−0.0010 (16)0.0108 (17)0.0012 (16)
C70.0291 (18)0.0184 (16)0.0309 (18)0.0025 (14)0.0070 (15)0.0041 (14)
C80.0242 (16)0.0171 (16)0.0276 (17)0.0007 (13)0.0059 (13)0.0017 (14)
C90.0307 (18)0.0199 (17)0.0254 (17)−0.0008 (14)0.0091 (14)0.0050 (14)
C100.0284 (17)0.0182 (16)0.0214 (15)0.0012 (14)0.0046 (13)−0.0003 (14)
Cl10.0418 (5)0.0276 (5)0.0393 (5)0.0038 (4)0.0168 (4)0.0054 (4)

Geometric parameters (Å, °)

O1—C71.223 (4)C4—C51.390 (5)
N1—C101.458 (4)C4—H40.93
N1—H1N0.87 (3)C5—C61.396 (5)
N1—H2N0.87 (3)C5—C71.487 (5)
N1—H3N0.87 (2)C6—H60.93
C1—C21.366 (6)C7—C81.497 (5)
C1—C61.393 (5)C8—C91.388 (5)
C1—H10.93C8—C10i1.409 (4)
C2—C31.367 (6)C9—C101.372 (5)
C2—H20.93C9—H90.93
C3—C41.381 (5)C10—C8i1.409 (4)
C3—H30.93
C10—N1—H1N117 (3)C4—C5—C6119.0 (3)
C10—N1—H2N111 (3)C4—C5—C7117.7 (3)
H1N—N1—H2N102 (4)C6—C5—C7123.1 (3)
C10—N1—H3N112 (3)C1—C6—C5119.6 (4)
H1N—N1—H3N108 (4)C1—C6—H6120.2
H2N—N1—H3N105 (4)C5—C6—H6120.2
C2—C1—C6120.1 (4)O1—C7—C5121.1 (3)
C2—C1—H1119.9O1—C7—C8118.1 (3)
C6—C1—H1119.9C5—C7—C8120.9 (3)
C1—C2—C3120.8 (4)C9—C8—C10i117.1 (3)
C1—C2—H2119.6C9—C8—C7121.2 (3)
C3—C2—H2119.6C10i—C8—C7121.6 (3)
C2—C3—C4120.0 (4)C10—C9—C8121.5 (3)
C2—C3—H3120.0C10—C9—H9119.2
C4—C3—H3120.0C8—C9—H9119.2
C3—C4—C5120.4 (4)C9—C10—C8i121.4 (3)
C3—C4—H4119.8C9—C10—N1118.1 (3)
C5—C4—H4119.8C8i—C10—N1120.5 (3)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1ii0.87 (4)2.29 (4)3.155 (3)172 (4)
N1—H2N···Cl10.87 (4)2.33 (4)3.187 (3)174 (4)
N1—H3N···Cl1iii0.87 (3)2.29 (3)3.159 (4)175 (2)

Symmetry codes: (ii) x, y+1, z; (iii) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2546).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Antoniadis, H., Hsieh, B. R., Abkowitz, M. A., Jenekhe, S. A. & Stolka, M. (1994). Synth. Met.62, 265–271.
  • Bruker (2000). XSCANS and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Enraf–Nonius (1985). CAD-4 Software Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Imai, Y., Johnson, E. F., Katto, T., Kurihara, M. & Stille, J. K. (1975). J. Polym. Sci. A Polym. Chem.13, 2233–2249.
  • Kolosov, S., Adamovich, V., Djurovich, P., Thompson, M. E. & Adachi, C. (2002). J. Am. Chem. Soc.124, 9945–9954. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tonzola, C. J., Alam, M. M., Kaminsky, W. & Jenekhe, S. A. (2003). J. Am. Chem. Soc.125, 13548–13558. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography