PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m364–m365.
Published online 2008 January 16. doi:  10.1107/S1600536808000949
PMCID: PMC2960276

{2-[(S)-({2-[(S)-1-Benzyl­pyrrolidine-2-carboxamido]phen­yl}(phen­yl)methyl­ene)amino]-4-hydroxy­butanoato-κ4 N,N′,N′′,O}nickel(II)

Abstract

The central Ni atom of the title compound, [Ni(C29H29N3O4)], is coordinated by three N atoms [Ni—N = 1.955 (2), 1.844 (2) and 1.872 (2) Å] and by one O atom [Ni—O = 1.862 (2) Å] in a pseudo-square-planar geometry. The conformation of the hydroxy­butanoate side chain is controlled by a strong intra­molecular hydrogen bond (H(...)O = 1.84 Å).

Related literature

For related literature, see: Belokon (1992 [triangle]); Belokon et al. (1988 [triangle]); Carducci et al. (2006 [triangle]); Chung et al. (1993 [triangle]); Gu et al. (2004 [triangle]); Jirman & Popkov (1995 [triangle]); Jirman et al. (1998 [triangle]); Kožíšek et al. (2004 [triangle]); Langer et al. (2007 [triangle]); Nádvorník & Popkov (2002 [triangle]); Popkov et al. (2003 [triangle], 2005 [triangle], and references therein).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m364-scheme1.jpg

Experimental

Crystal data

  • [Ni(C29H29N3O4)]
  • M r = 542.26
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m364-efi1.jpg
  • a = 9.743 (1) Å
  • b = 10.222 (1) Å
  • c = 26.016 (1) Å
  • V = 2591.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.79 mm−1
  • T = 100 (2) K
  • 0.25 × 0.19 × 0.16 mm

Data collection

  • Oxford Diffraction Gemini R CCD diffractometer
  • Absorption correction: analytical (Clark & Reid, 1995 [triangle]) T min = 0.840, T max = 0.897
  • 62972 measured reflections
  • 5273 independent reflections
  • 4968 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.073
  • S = 1.08
  • 5273 reflections
  • 337 parameters
  • 112 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.81 e Å−3
  • Δρmin = −0.29 e Å−3
  • Absolute structure: (Flack, 1983 [triangle]), 2260 Friedel pairs
  • Flack parameter: 0.04 (1)

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: enCIFer (Allen et al., 2004 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000949/sg2215sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000949/sg2215Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Grant Agency of the Slovak Republic (grant No. 1/2449/05), the Ministry of Education, Youth and Sports of the Czech Republic (grant MSM0021627501), as well as the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

NiII complexes of Schiff bases of (S)—N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and α-amino acids are frequently used as chiral α-amino acids synthons in preparative asymmetric syntheses of non-proteinogenic α-amino acids (Belokon et al., 1992; Popkov et al., 2005). One of the most unique applications is syntheses of enantiomerically pure α-imino acids which are of great importance in design of conformationally restricted peptidomimetics (Belokon et al., 1988; Chung et al., 1993). X-ray structures of intermediate complexes bearing a hydroxy group in ω-position of the amino acid fragment side chain have not been published. During course of search for chiral nickel(II) complexes suitable for charge-density studies (Kožíšek et al., 2004), we investigated the first representative of this class, viz. the NiII complex of the Schiff base of (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and (S)-2-amino-4-hydroxybutanoic acid.

The asymmetric unit of the title compound (Fig. 1) contains one molecule. The Ni atom is pseudo-square-planar coordinated by three N atoms [1.955 (2), 1.844 (2) and 1.872 (2) Å] and by one O atom [1.862 (2) Å].

Crystal structure studied could be compared to those ones which differ by substituents in position C(19). In the case if there are no substituents (NiII complex of the Schiff base of (S)—N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and glycine), the complex has in average 0.022 Å shorter Ni—N and Ni—O distances due to lower steric hindrance [Popkov et al., 2003].

A very similar complex to the studied one, bearing (S)-2-aminohept-6-enoic acid residue which does not form the hydrogen bond with O3 as (S)-2-amino-4-hydroxybutanoic acid does, also have shorter Ni—N distances (Ni—N1 1.941 Å, Ni—N2 1.845 Å, Ni—N3 1.862 Å, Ni—O4 1.861 Å and Ni—N1 1.955 Å, Ni—N2 1.844 Å, Ni—N3 1.872 Å, Ni—O2 1.862 Å, respectively), but the difference is not statistically significant [Carducci et al., 2006]. The difference can be attributed to not so strong distortion of the amino acid residue ring and distortion of the whole complex due to lack of the intramolecular hydrogen bond.

The most sterically hindered complexes derived from α-quaternary α-amino acids demonstrate similar average Ni—N and Ni—O distances as the studied compound (the NiII complex of the Schiff base of (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and (S)-2-amino-2-methylhex-5-enoic acid (Gu et al., 2004) and the NiII complex of the Schiff base of (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and 2-amino-2-methyl-propanoic acid (Langer et al., 2007).

Subsequent addition of the substituents has similar effect to distances of the benzyl groups from the nickel atoms. In the non-substituted complex [Popkov et al., 2003] the distance Ni—C22 is the shortest - 2.928 Å; in the monosubstituted it is half-angstrom longer [Ni—C22 3.431 and 3.467 Å (due to disorder) Carducci, et al., 2006], and in both bis-substituted [Gu et al., 2004 and Langer et al., 2007] the distances are third-angstrom longer (3.268 and 3.337 Å, respectively). The distances of the benzyl groups from the nickel atoms should be similar in deuterochloroform solutions; in NMR spectra of the complexes a number of unique long-range spin-spin interactions and NOE interactions were observed for the NiII complex of the Schiff base of (S)—N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and glycine, but not for the NiII complex of the Schiff base of (S)—N-(2-benzoylphenyl)-1-benzyl-pyrrolidine-2-carboxamide and 2-amino-2-methylpropanoic acid [Jirman & Popkov, 1995, Jirman et al., 1998, Popkov et al., 2003, Langer et al., 2007].

Interesting feature of the crystal structure is a strong intramolecular hydrogen bond O4—H4AW···O3 (153.7 °) (Table 2, Fig.1), which controls the conformation of a hydroxybutanoic acid side-chain.

Experimental

NiII complex of the Schiff base of (S)—N-(2-benzoylphenyl)-1- benzylpyrrolidine-2-carboxamide and (S)-2-amino-4-hydroxybutanoic acid (L-homoserine) was prepared using a standard procedure previously described for a similar complex derived from glycine (Nádvorník, Popkov 2002). Single crystals were grown from acetone solution; the compound was fully characterized by 1H-NMR, 13C-NMR and tandem MSn techniques.

Refinement

(type here to add refinement details)

Figures

Fig. 1.
The molecular structure of I, with the numbering scheme of the molecule. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen-bond is indicated by dashed line.

Crystal data

[Ni(C29H29N3O4)]F(000) = 1136
Mr = 542.26Dx = 1.390 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 35886 reflections
a = 9.743 (1) Åθ = 3.2–35.3°
b = 10.222 (1) ŵ = 0.79 mm1
c = 26.016 (1) ÅT = 100 K
V = 2591.0 (4) Å3Block, orange
Z = 40.25 × 0.19 × 0.16 mm

Data collection

Oxford Diffraction Gemini R CCD diffractometer5273 independent reflections
Radiation source: fine-focus sealed tube4968 reflections with I > 2σ(I)
graphiteRint = 0.038
Rotation method data acquisition using ω and [var phi] scansθmax = 26.4°, θmin = 4.2°
Absorption correction: analytical (Clark & Reid, 1995)h = −12→12
Tmin = 0.840, Tmax = 0.897k = −12→12
62972 measured reflectionsl = −32→32

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073w = 1/[σ2(Fo2) + (0.0343P)2 + 1.651P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5273 reflectionsΔρmax = 0.81 e Å3
337 parametersΔρmin = −0.29 e Å3
112 restraintsAbsolute structure: (Flack, 1983), 2260 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.04 (1)

Special details

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.1251 (2)0.7826 (2)0.09762 (9)0.0266 (5)
H1B1.17970.83050.12360.032*
H1A1.18360.76500.06730.032*
C21.0675 (3)0.6558 (3)0.11981 (10)0.0298 (6)
H2B1.03230.66900.15510.036*
H2A1.13780.58590.12020.036*
C30.9499 (3)0.6230 (2)0.08195 (10)0.0292 (5)
H3B0.87000.58600.10050.035*
H3A0.98080.55930.05570.035*
C40.9116 (3)0.7574 (2)0.05630 (8)0.0212 (5)
H4A0.93350.75500.01880.025*
C50.7633 (2)0.7917 (2)0.06404 (8)0.0207 (5)
C60.6196 (2)0.9454 (2)0.11106 (8)0.0191 (4)
C70.5289 (2)0.9622 (3)0.06902 (9)0.0249 (5)
H7A0.54960.92280.03690.030*
C80.4110 (3)1.0349 (3)0.07429 (10)0.0307 (5)
H8A0.35171.04670.04570.037*
C90.3781 (3)1.0920 (3)0.12203 (10)0.0358 (6)
H9A0.29561.14080.12540.043*
C100.4646 (2)1.0779 (3)0.16439 (10)0.0298 (5)
H10A0.44051.11650.19640.036*
C110.5877 (2)1.0065 (2)0.15983 (8)0.0208 (5)
C120.6754 (2)1.0000 (2)0.20620 (9)0.0200 (5)
C130.6158 (3)1.0400 (2)0.25796 (8)0.0220 (5)
C140.5219 (3)0.9572 (3)0.28276 (10)0.0327 (6)
H14A0.49970.87460.26820.039*
C150.4606 (3)0.9970 (3)0.32928 (11)0.0388 (7)
H15A0.39800.94010.34610.047*
C160.4906 (3)1.1192 (3)0.35113 (10)0.0371 (6)
H16A0.44791.14560.38230.045*
C170.5839 (3)1.2014 (3)0.32650 (10)0.0318 (6)
H17A0.60531.28420.34100.038*
C180.6471 (2)1.1622 (3)0.28005 (10)0.0267 (5)
H18A0.71091.21860.26360.032*
C190.8890 (3)0.9518 (2)0.24976 (8)0.0210 (4)
H19A0.86421.02190.27490.025*
C201.0355 (3)0.9710 (2)0.23118 (9)0.0239 (5)
C211.0390 (2)0.9727 (2)0.04879 (10)0.0237 (5)
H21B1.09921.03180.06880.028*
H21A1.09360.93890.01960.028*
C220.9215 (2)1.0526 (2)0.02739 (9)0.0204 (5)
C230.8585 (3)1.1494 (2)0.05785 (10)0.0280 (5)
H23A0.88971.16590.09180.034*
C240.7494 (3)1.2206 (3)0.03723 (15)0.0481 (8)
H24A0.70421.28470.05750.058*
C250.7059 (3)1.1975 (3)−0.01382 (18)0.0618 (11)
H25A0.63101.2457−0.02750.074*
C260.7713 (4)1.1055 (3)−0.04396 (15)0.0617 (11)
H26A0.74331.0926−0.07860.074*
C270.8778 (4)1.0321 (3)−0.02365 (10)0.0393 (7)
H27A0.92170.9677−0.04420.047*
C280.8688 (3)0.8146 (2)0.27477 (9)0.0287 (6)
H28B0.77050.80420.28360.034*
H28A0.89150.74700.24890.034*
C290.9549 (3)0.7881 (3)0.32357 (11)0.0346 (6)
H29B0.94540.86380.34700.041*
H29A0.91670.71060.34130.041*
N10.99995 (19)0.8581 (2)0.08284 (7)0.0204 (4)
N20.7433 (2)0.87954 (18)0.10419 (7)0.0184 (4)
N30.80154 (19)0.96293 (18)0.20289 (7)0.0181 (4)
Ni10.89673 (3)0.91512 (3)0.143270 (10)0.01780 (8)
O10.67597 (18)0.73706 (18)0.03689 (6)0.0271 (4)
O21.05357 (17)0.95424 (18)0.18116 (7)0.0261 (4)
O31.12652 (18)0.99616 (19)0.26255 (7)0.0324 (4)
O41.0957 (2)0.7663 (2)0.31439 (8)0.0480 (5)
H4W1.1334 (14)0.8443 (19)0.3004 (11)0.058*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0218 (12)0.0316 (13)0.0265 (11)0.0112 (10)−0.0007 (9)0.0017 (10)
C20.0376 (15)0.0261 (13)0.0258 (12)0.0120 (11)0.0002 (10)0.0024 (10)
C30.0357 (13)0.0230 (13)0.0290 (12)0.0036 (10)0.0032 (10)0.0033 (10)
C40.0257 (12)0.0194 (11)0.0186 (10)0.0041 (10)0.0031 (9)0.0000 (8)
C50.0244 (11)0.0196 (11)0.0180 (10)−0.0018 (9)0.0023 (9)−0.0010 (9)
C60.0163 (10)0.0217 (11)0.0192 (10)−0.0045 (9)0.0020 (8)0.0020 (8)
C70.0169 (11)0.0349 (13)0.0229 (11)−0.0022 (10)0.0021 (9)0.0009 (10)
C80.0173 (11)0.0444 (15)0.0304 (12)0.0019 (11)−0.0059 (10)0.0041 (11)
C90.0219 (12)0.0484 (16)0.0372 (13)0.0101 (13)−0.0022 (10)−0.0050 (13)
C100.0180 (11)0.0410 (15)0.0305 (12)0.0064 (12)0.0012 (9)−0.0086 (12)
C110.0172 (11)0.0230 (11)0.0221 (10)−0.0020 (9)0.0004 (9)−0.0020 (8)
C120.0201 (11)0.0187 (11)0.0213 (11)−0.0022 (9)0.0017 (9)−0.0030 (9)
C130.0205 (11)0.0260 (11)0.0194 (10)0.0033 (10)−0.0005 (9)−0.0048 (8)
C140.0342 (14)0.0338 (14)0.0300 (13)−0.0007 (11)0.0077 (11)−0.0042 (11)
C150.0359 (15)0.0488 (18)0.0317 (14)0.0007 (13)0.0116 (12)−0.0010 (13)
C160.0351 (14)0.0528 (17)0.0234 (12)0.0185 (12)0.0014 (11)−0.0074 (12)
C170.0257 (13)0.0383 (14)0.0313 (13)0.0151 (11)−0.0080 (10)−0.0153 (11)
C180.0213 (12)0.0271 (13)0.0318 (13)0.0071 (10)−0.0047 (10)−0.0057 (10)
C190.0225 (11)0.0204 (11)0.0201 (10)0.0026 (10)−0.0030 (9)−0.0032 (8)
C200.0238 (12)0.0206 (12)0.0272 (12)0.0015 (10)−0.0034 (10)0.0004 (9)
C210.0180 (11)0.0256 (12)0.0277 (12)0.0014 (10)0.0054 (10)0.0042 (10)
C220.0187 (11)0.0196 (11)0.0229 (10)−0.0043 (8)0.0001 (8)0.0047 (8)
C230.0295 (14)0.0213 (12)0.0333 (13)0.0010 (10)0.0065 (10)0.0029 (10)
C240.0300 (14)0.0269 (15)0.088 (2)0.0076 (12)0.0157 (16)0.0203 (15)
C250.0363 (17)0.0403 (19)0.109 (3)−0.0102 (14)−0.0359 (19)0.040 (2)
C260.085 (3)0.0305 (18)0.069 (2)−0.0197 (17)−0.054 (2)0.0208 (15)
C270.065 (2)0.0250 (13)0.0283 (13)−0.0059 (14)−0.0126 (14)0.0033 (10)
C280.0347 (15)0.0225 (12)0.0289 (12)0.0039 (10)0.0014 (10)0.0015 (10)
C290.0317 (13)0.0392 (16)0.0328 (14)0.0095 (12)0.0071 (11)0.0141 (12)
N10.0174 (9)0.0215 (10)0.0221 (9)0.0029 (8)0.0009 (7)0.0032 (8)
N20.0185 (9)0.0221 (10)0.0148 (8)0.0003 (7)0.0016 (7)0.0009 (7)
N30.0172 (9)0.0166 (9)0.0205 (9)−0.0007 (7)−0.0017 (7)−0.0011 (7)
Ni10.01522 (12)0.02042 (13)0.01776 (12)0.00077 (11)0.00044 (11)−0.00103 (11)
O10.0277 (9)0.0332 (10)0.0204 (8)−0.0057 (8)0.0002 (7)−0.0052 (7)
O20.0178 (8)0.0332 (10)0.0272 (8)0.0001 (7)−0.0009 (7)−0.0035 (7)
O30.0254 (10)0.0390 (11)0.0328 (9)−0.0015 (8)−0.0097 (8)−0.0034 (8)
O40.0386 (11)0.0538 (13)0.0516 (12)0.0148 (11)0.0041 (11)0.0190 (10)

Geometric parameters (Å, °)

C1—N11.494 (3)C16—H16A0.9500
C1—C21.526 (4)C17—C181.414 (3)
C1—H1B0.9900C17—H17A0.9500
C1—H1A0.9900C18—H18A0.9500
C2—C31.548 (4)C19—N31.492 (3)
C2—H2B0.9900C19—C201.519 (3)
C2—H2A0.9900C19—C281.559 (3)
C3—C41.573 (3)C19—H19A1.0000
C3—H3B0.9900C20—O31.232 (3)
C3—H3A0.9900C20—O21.324 (3)
C4—C51.501 (3)C21—C221.512 (3)
C4—N11.509 (3)C21—N11.517 (3)
C4—H4A1.0000C21—H21B0.9900
C5—O11.239 (3)C21—H21A0.9900
C5—N21.391 (3)C22—C231.408 (3)
C6—N21.392 (3)C22—C271.410 (3)
C6—C71.417 (3)C23—C241.396 (4)
C6—C111.448 (3)C23—H23A0.9500
C7—C81.374 (4)C24—C251.414 (6)
C7—H7A0.9500C24—H24A0.9500
C8—C91.409 (4)C25—C261.380 (6)
C8—H8A0.9500C25—H25A0.9500
C9—C101.395 (4)C26—C271.386 (5)
C9—H9A0.9500C26—H26A0.9500
C10—C111.409 (3)C27—H27A0.9500
C10—H10A0.9500C28—C291.546 (4)
C11—C121.480 (3)C28—H28B0.9900
C12—N31.289 (3)C28—H28A0.9900
C12—C131.522 (3)C29—O41.409 (4)
C13—C141.403 (4)C29—H29B0.9900
C13—C181.408 (3)C29—H29A0.9900
C14—C151.409 (4)N1—Ni11.9552 (19)
C14—H14A0.9500N2—Ni11.8439 (19)
C15—C161.404 (4)N3—Ni11.8721 (19)
C15—H15A0.9500Ni1—O21.8619 (17)
C16—C171.393 (4)O4—H4W0.950 (7)
N1—C1—C2103.65 (19)N3—C19—C20105.45 (18)
N1—C1—H1B111.0N3—C19—C28109.73 (19)
C2—C1—H1B111.0C20—C19—C28111.6 (2)
N1—C1—H1A111.0N3—C19—H19A110.0
C2—C1—H1A111.0C20—C19—H19A110.0
H1B—C1—H1A109.0C28—C19—H19A110.0
C1—C2—C3102.46 (19)O3—C20—O2125.6 (2)
C1—C2—H2B111.3O3—C20—C19119.5 (2)
C3—C2—H2B111.3O2—C20—C19114.9 (2)
C1—C2—H2A111.3C22—C21—N1116.21 (19)
C3—C2—H2A111.3C22—C21—H21B108.2
H2B—C2—H2A109.2N1—C21—H21B108.2
C2—C3—C4104.8 (2)C22—C21—H21A108.2
C2—C3—H3B110.8N1—C21—H21A108.2
C4—C3—H3B110.8H21B—C21—H21A107.4
C2—C3—H3A110.8C23—C22—C27120.2 (2)
C4—C3—H3A110.8C23—C22—C21120.1 (2)
H3B—C3—H3A108.9C27—C22—C21119.7 (2)
C5—C4—N1109.19 (18)C24—C23—C22118.8 (3)
C5—C4—C3112.0 (2)C24—C23—H23A120.6
N1—C4—C3105.49 (18)C22—C23—H23A120.6
C5—C4—H4A110.0C23—C24—C25120.1 (3)
N1—C4—H4A110.0C23—C24—H24A119.9
C3—C4—H4A110.0C25—C24—H24A119.9
O1—C5—N2128.5 (2)C26—C25—C24120.6 (3)
O1—C5—C4118.7 (2)C26—C25—H25A119.7
N2—C5—C4112.71 (19)C24—C25—H25A119.7
N2—C6—C7119.99 (19)C25—C26—C27119.9 (3)
N2—C6—C11120.46 (19)C25—C26—H26A120.1
C7—C6—C11119.4 (2)C27—C26—H26A120.1
C8—C7—C6120.6 (2)C26—C27—C22120.3 (3)
C8—C7—H7A119.7C26—C27—H27A119.8
C6—C7—H7A119.7C22—C27—H27A119.8
C7—C8—C9120.2 (2)C29—C28—C19115.6 (2)
C7—C8—H8A119.9C29—C28—H28B108.4
C9—C8—H8A119.9C19—C28—H28B108.4
C10—C9—C8121.0 (2)C29—C28—H28A108.4
C10—C9—H9A119.5C19—C28—H28A108.4
C8—C9—H9A119.5H28B—C28—H28A107.5
C9—C10—C11120.1 (2)O4—C29—C28114.6 (2)
C9—C10—H10A120.0O4—C29—H29B108.6
C11—C10—H10A120.0C28—C29—H29B108.6
C10—C11—C6118.7 (2)O4—C29—H29A108.6
C10—C11—C12116.5 (2)C28—C29—H29A108.6
C6—C11—C12124.8 (2)H29B—C29—H29A107.6
N3—C12—C11120.6 (2)C1—N1—C4103.35 (18)
N3—C12—C13120.1 (2)C1—N1—C21110.15 (18)
C11—C12—C13119.3 (2)C4—N1—C21113.74 (18)
C14—C13—C18119.2 (2)C1—N1—Ni1111.52 (14)
C14—C13—C12119.5 (2)C4—N1—Ni1106.14 (13)
C18—C13—C12121.1 (2)C21—N1—Ni1111.62 (15)
C13—C14—C15119.8 (3)C5—N2—C6121.98 (19)
C13—C14—H14A120.1C5—N2—Ni1115.33 (15)
C15—C14—H14A120.1C6—N2—Ni1122.40 (15)
C16—C15—C14121.1 (3)C12—N3—C19120.82 (19)
C16—C15—H15A119.5C12—N3—Ni1127.19 (16)
C14—C15—H15A119.5C19—N3—Ni1111.98 (14)
C17—C16—C15119.1 (2)N2—Ni1—O2178.29 (8)
C17—C16—H16A120.5N2—Ni1—N396.12 (8)
C15—C16—H16A120.5O2—Ni1—N384.94 (8)
C16—C17—C18120.4 (2)N2—Ni1—N185.11 (8)
C16—C17—H17A119.8O2—Ni1—N193.88 (8)
C18—C17—H17A119.8N3—Ni1—N1177.24 (9)
C13—C18—C17120.4 (2)C20—O2—Ni1116.03 (16)
C13—C18—H18A119.8C29—O4—H4W108.0 (13)
C17—C18—H18A119.8
N1—C1—C2—C341.8 (2)C2—C1—N1—C21−166.68 (19)
C1—C2—C3—C4−22.6 (2)C2—C1—N1—Ni168.8 (2)
C2—C3—C4—C5−122.5 (2)C5—C4—N1—C1150.08 (18)
C2—C3—C4—N1−3.8 (2)C3—C4—N1—C129.5 (2)
N1—C4—C5—O1165.5 (2)C5—C4—N1—C21−90.5 (2)
C3—C4—C5—O1−78.0 (3)C3—C4—N1—C21148.95 (19)
N1—C4—C5—N2−17.5 (2)C5—C4—N1—Ni132.61 (19)
C3—C4—C5—N299.0 (2)C3—C4—N1—Ni1−87.93 (17)
N2—C6—C7—C8−175.3 (2)C22—C21—N1—C1175.5 (2)
C11—C6—C7—C8−0.5 (4)C22—C21—N1—C460.1 (3)
C6—C7—C8—C9−1.0 (4)C22—C21—N1—Ni1−60.0 (2)
C7—C8—C9—C101.0 (4)O1—C5—N2—C6−17.3 (4)
C8—C9—C10—C110.5 (5)C4—C5—N2—C6166.07 (19)
C9—C10—C11—C6−1.9 (4)O1—C5—N2—Ni1168.8 (2)
C9—C10—C11—C12178.2 (3)C4—C5—N2—Ni1−7.9 (2)
N2—C6—C11—C10176.8 (2)C7—C6—N2—C5−22.5 (3)
C7—C6—C11—C101.9 (3)C11—C6—N2—C5162.7 (2)
N2—C6—C11—C12−3.3 (3)C7—C6—N2—Ni1151.03 (18)
C7—C6—C11—C12−178.2 (2)C11—C6—N2—Ni1−23.8 (3)
C10—C11—C12—N3−164.5 (2)C11—C12—N3—C19−177.90 (19)
C6—C11—C12—N315.6 (3)C13—C12—N3—C193.3 (3)
C10—C11—C12—C1314.3 (3)C11—C12—N3—Ni11.0 (3)
C6—C11—C12—C13−165.6 (2)C13—C12—N3—Ni1−177.85 (16)
N3—C12—C13—C14−107.6 (3)C20—C19—N3—C12−153.7 (2)
C11—C12—C13—C1473.5 (3)C28—C19—N3—C1285.9 (3)
N3—C12—C13—C1876.1 (3)C20—C19—N3—Ni127.2 (2)
C11—C12—C13—C18−102.7 (3)C28—C19—N3—Ni1−93.10 (19)
C18—C13—C14—C15−0.2 (4)C5—N2—Ni1—O276 (3)
C12—C13—C14—C15−176.5 (2)C6—N2—Ni1—O2−98 (3)
C13—C14—C15—C160.8 (4)C5—N2—Ni1—N3−154.96 (16)
C14—C15—C16—C17−0.8 (4)C6—N2—Ni1—N331.13 (17)
C15—C16—C17—C180.2 (4)C5—N2—Ni1—N122.57 (16)
C14—C13—C18—C17−0.4 (4)C6—N2—Ni1—N1−151.35 (17)
C12—C13—C18—C17175.9 (2)C12—N3—Ni1—N2−20.3 (2)
C16—C17—C18—C130.3 (4)C19—N3—Ni1—N2158.62 (15)
N3—C19—C20—O3163.7 (2)C12—N3—Ni1—O2158.3 (2)
C28—C19—C20—O3−77.2 (3)C19—N3—Ni1—O2−22.72 (15)
N3—C19—C20—O2−18.5 (3)C12—N3—Ni1—N1−136.9 (18)
C28—C19—C20—O2100.6 (2)C19—N3—Ni1—N142.1 (19)
N1—C21—C22—C2381.3 (3)C1—N1—Ni1—N2−142.28 (16)
N1—C21—C22—C27−100.4 (3)C4—N1—Ni1—N2−30.41 (14)
C27—C22—C23—C242.4 (4)C21—N1—Ni1—N294.03 (16)
C21—C22—C23—C24−179.4 (2)C1—N1—Ni1—O239.10 (16)
C22—C23—C24—C25−1.6 (4)C4—N1—Ni1—O2150.97 (14)
C23—C24—C25—C26−0.6 (5)C21—N1—Ni1—O2−84.59 (16)
C24—C25—C26—C272.0 (5)C1—N1—Ni1—N3−25.5 (19)
C25—C26—C27—C22−1.2 (5)C4—N1—Ni1—N386.4 (18)
C23—C22—C27—C26−1.0 (4)C21—N1—Ni1—N3−149.2 (18)
C21—C22—C27—C26−179.3 (3)O3—C20—O2—Ni1179.3 (2)
N3—C19—C28—C29179.2 (2)C19—C20—O2—Ni11.6 (3)
C20—C19—C28—C2962.7 (3)N2—Ni1—O2—C20141 (3)
C19—C28—C29—O4−73.6 (3)N3—Ni1—O2—C2012.10 (17)
C2—C1—N1—C4−44.8 (2)N1—Ni1—O2—C20−165.41 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4W···O30.95 (1)1.84 (1)2.726 (3)154.(1)
C7—H7A···O10.952.262.837 (3)118.
C1—H1B···O20.992.312.879 (3)115.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2215).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Belokon, Y. N. (1992). Pure Appl. Chem.64, 1917–1924.
  • Belokon, Y. N., Bulychev, A. G., Pavlov, V. A., Fedorova, E. B., Tsyryapkin, V. A., Bakhmutov, V. I. & Belikov, V. M. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 2075–2083.
  • Brandenburg, K. (1998). DIAMOND University of Bonn, Germany.
  • Carducci, M. D., Gu, X., Cole, J. R. & Hruby, V. J. (2006). Acta Cryst. E62, m1219–m1220. [PMC free article] [PubMed]
  • Chung, H.-H., Benson, D. R. & Schultz, P. G. (1993). Science, 259, 806–809. [PubMed]
  • Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gu, X. Y., Ndungu, J. A., Qiu, W., Ying, J. F., Carducci, M. D., Wooden, H. & Hruby, V. J. (2004). Tetrahedron, 60, 8233–8243.
  • Jirman, J., Nádvorník, M., Sopkova, J. & Popkov, A. (1998). Magn. Reson. Chem.36, 351–355.
  • Jirman, J. & Popkov, A. (1995). Collect. Czech. Chem. Commun.60, 990–998.
  • Kožíšek, J., Fronc, M., Skubák, P., Popkov, A., Breza, M., Fuess, H. & Paulmann, C. (2004). Acta Cryst. A60, 510–516. [PubMed]
  • Langer, V., Popkov, A., Nádvorník, M. & Lyčka, A. (2007). Polyhedron, 26, 911–917.
  • Nádvorník, M. & Popkov, A. (2002). Green Chem.4, 71–72.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Popkov, A., Císařová, I., Sopková, J., Jirman, J., Lyčka, A. & Kochetkov, K. A. (2005). Collect. Czech. Chem. Commun.70, 1397–1410 .
  • Popkov, A., Langer, V., Manorik, P. A. & Weidlich, T. (2003). Transition Met. Chem.28, 475–481.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography