PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o537.
Published online 2008 January 30. doi:  10.1107/S1600536808002389
PMCID: PMC2960274

Diisopropyl­ammonium 3,5,6-trichloro­pyridin-2-olate

Abstract

In the title salt, C6H16N+·C5HCl3NO, the cation links to the anion, which is almost planar, through an N—H(...)O hydrogen bond. Inter­molecular hydrogen bonds link two cations and two anions into a centrosymmetric cluster. The atoms involved in the hydrogen bonding form a planar octa­gonal arrangement in the crystal structure.

Related literature

For related literature, see: Fox et al. (2002 [triangle]); Baughman (1989 [triangle]); Fakhraian et al. (2004 [triangle]); Zheng, Liu, Li et al. (2006 [triangle]); Zheng, Liu, Xu et al. (2006a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o537-scheme1.jpg

Experimental

Crystal data

  • C6H16N+·C5HCl3NO
  • M r = 299.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o537-efi1.jpg
  • a = 8.087 (3) Å
  • b = 11.066 (3) Å
  • c = 16.389 (5) Å
  • β = 94.540 (15)°
  • V = 1462.1 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.61 mm−1
  • T = 298 (1) K
  • 0.39 × 0.18 × 0.16 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.794, T max = 0.907
  • 14096 measured reflections
  • 3357 independent reflections
  • 2081 reflections with F 2 > 2σ(F 2)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.081
  • S = 1.04
  • 3357 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: CrystalStructure.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808002389/wk2076sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002389/wk2076Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Many compounds containing the 3,5,6-trichloro-pyridin-2-ol group have potential bioactivity (Fakhraian et al., 2004; Baughman, 1989; Fox et al., 2002). Similar compounds has been synthesized in our laboratory and some bioactive compounds have been found (Zheng et al., 2006). In a continuation of our work into structure–activity relationships (Zheng, Liu, Xu & Xu, 2006a,b), we obtained a colorless crystalline compound, (I), by mixing sodium 3,5,6-trichloropyridin-2-olate with diisopropylammonium chloride, which was crystallized from diethyl ether. In the crystal structure, there are two independent structural units. The diisopropylammonium cation has an N2—C10 distance of 1.5009 (19)Å and a C10—N2—C7 angle of 117.47 (11)° (Table 1). The 3,5,6-trichloropyridin-2-olate anion has a C1—O1 distance of 1.2716 (18) Å, which is shorter than normal C—O distance for a smallar covalent radius with Csp2. The interesting feature of the crystal structure is the intermolecular hydrogen bonds N2—H201···O1 and N2—H202···O1i, which link two cations and two anions into a centrosymmetric cluster and form a planar octagon (Table 2 and Fig. 1).

Experimental

Sodium 3,5,6-trichloropyridin-2-olate (2.2 g, 10 mmol) was dissolved in the distilled water (30 ml) at 370 K, cooled to room temperature, and diisopropylammonium chloride, which was generated from diisopropylamine (1.8 ml, 12 mmol) with HCl (36%) (2 ml), was added dropwise with stirring for 0.5 h. The solution was extracted with diethyl ether 2 × 15 ml. and dried over anhydrous magnesium sulfate. Suitable crystals (m.p. 442–443 K) were obtained from a diethyl ether solution.

Refinement

All H atoms were placed in calculated positions, with C—H distances in the range 0.93–0.98 Å and N—H distance of 0.96 Å. All H atoms were refined using a riding model, with Uiso(H)= 1.2Ueq.

Figures

Fig. 1.
The centrosymmetric hydrogen-bonded (dashed lines) cluster in (I), showing the atom-numbering scheme and 40% probability displacement ellipsoids. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]

Crystal data

C6H16N+·C5HCl3NOF000 = 624.00
Mr = 299.63Dx = 1.361 Mg m3
Monoclinic, P21/cMelting point: 443 K
Hall symbol: -P 2ybcMo Kα radiation λ = 0.71075 Å
a = 8.087 (3) ÅCell parameters from 10937 reflections
b = 11.066 (3) Åθ = 3.1–27.5º
c = 16.389 (5) ŵ = 0.61 mm1
β = 94.540 (15)ºT = 298 (1) K
V = 1462.1 (8) Å3Block, colorless
Z = 40.39 × 0.18 × 0.16 mm

Data collection

Rigaku R-AXIS RAPID diffractometer2081 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.027
ω scansθmax = 27.5º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = −9→10
Tmin = 0.794, Tmax = 0.907k = −14→14
14096 measured reflectionsl = −21→21
3357 independent reflections

Refinement

Refinement on F2  w = 1/[0.0002Fo2 + σ(Fo2)]/(4Fo2)
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max < 0.001
wR(F2) = 0.081Δρmax = 0.29 e Å3
S = 1.05Δρmin = −0.31 e Å3
3357 reflectionsExtinction correction: Larson (1970), equation 22
155 parametersExtinction coefficient: 143 (15)
H-atom parameters constrained

Special details

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.39967 (6)0.13293 (4)0.40436 (3)0.08518 (18)
Cl20.05102 (6)−0.02373 (5)0.65045 (3)0.08680 (17)
Cl30.06254 (8)0.24633 (5)0.71793 (4)0.1034 (2)
O10.36820 (13)0.36964 (9)0.49068 (6)0.0604 (3)
N10.22849 (16)0.29782 (11)0.59411 (9)0.0566 (4)
N20.37423 (14)0.57219 (10)0.60126 (6)0.0469 (3)
C10.30288 (18)0.28003 (12)0.52456 (10)0.0498 (4)
C20.30287 (19)0.16000 (13)0.49307 (10)0.0529 (4)
C30.2269 (2)0.06825 (13)0.53135 (11)0.0595 (5)
C40.1497 (2)0.09140 (13)0.60194 (10)0.0573 (4)
C50.1557 (2)0.20776 (14)0.62985 (10)0.0573 (5)
C60.5796 (2)0.46023 (17)0.68652 (12)0.0771 (6)
C70.4207 (2)0.53190 (13)0.68790 (9)0.0561 (4)
C80.4384 (2)0.63777 (17)0.74638 (11)0.0780 (6)
C90.0708 (2)0.58893 (18)0.60955 (12)0.0764 (6)
C100.2255 (2)0.65272 (13)0.58681 (10)0.0570 (4)
C110.2132 (2)0.69139 (17)0.49810 (11)0.0742 (6)
H30.2274−0.00970.51010.071*
H70.33330.47840.70510.067*
H100.24330.72450.62140.068*
H610.66350.51110.66640.091*
H620.56250.39110.65150.092*
H630.61460.43400.74100.092*
H810.33470.68000.74660.093*
H820.47130.60940.80060.093*
H830.52160.69140.72860.093*
H91−0.02340.64090.59880.093*
H920.05570.51670.57740.092*
H930.08190.56810.66660.093*
H1110.19260.62140.46420.088*
H1120.31520.72870.48540.088*
H1130.12370.74790.48830.088*
H2010.35490.50150.56800.056*
H2020.46890.61250.58200.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1051 (4)0.0724 (3)0.0820 (3)−0.0167 (2)0.0323 (2)−0.0223 (2)
Cl20.1076 (4)0.0690 (3)0.0828 (3)−0.0353 (2)0.0014 (2)0.0219 (2)
Cl30.1362 (5)0.0953 (4)0.0860 (4)−0.0262 (3)0.0534 (3)−0.0126 (2)
O10.0653 (7)0.0426 (5)0.0749 (7)−0.0111 (5)0.0165 (5)0.0024 (5)
N10.0615 (8)0.0436 (7)0.0654 (9)−0.0082 (6)0.0109 (6)−0.0044 (6)
N20.0512 (7)0.0390 (6)0.0509 (7)−0.0053 (5)0.0052 (5)−0.0037 (5)
C10.0464 (8)0.0419 (8)0.0603 (10)−0.0055 (6)−0.0003 (7)0.0006 (7)
C20.0559 (9)0.0458 (8)0.0570 (9)−0.0060 (7)0.0036 (7)−0.0039 (7)
C30.0691 (10)0.0399 (8)0.0675 (11)−0.0095 (7)−0.0064 (8)−0.0031 (7)
C40.0622 (10)0.0498 (9)0.0582 (10)−0.0147 (7)−0.0059 (8)0.0108 (8)
C50.0611 (10)0.0559 (9)0.0552 (10)−0.0084 (8)0.0063 (8)0.0022 (7)
C60.0878 (13)0.0710 (11)0.0703 (12)0.0083 (10)−0.0086 (10)0.0142 (10)
C70.0666 (10)0.0507 (8)0.0511 (9)−0.0089 (7)0.0052 (7)0.0077 (7)
C80.1041 (15)0.0719 (12)0.0562 (10)−0.0103 (10)−0.0058 (10)−0.0070 (9)
C90.0577 (11)0.0899 (13)0.0834 (13)0.0033 (9)0.0158 (9)−0.0142 (11)
C100.0581 (9)0.0469 (8)0.0652 (10)0.0045 (7)−0.0003 (8)−0.0107 (7)
C110.0690 (12)0.0679 (11)0.0833 (13)0.0045 (9)−0.0092 (10)0.0105 (10)

Geometric parameters (Å, °)

Cl1—C21.7310 (17)C6—H620.960
Cl2—C41.7297 (17)C6—H630.960
Cl3—C51.7337 (18)C7—C81.513 (2)
O1—C11.2716 (18)C7—H70.980
N1—C11.345 (2)C8—H810.960
N1—C51.318 (2)C8—H820.960
N2—C71.5072 (18)C8—H830.960
N2—C101.5009 (19)C9—C101.508 (2)
N2—H2010.959C9—H910.960
N2—H2020.961C9—H920.960
C1—C21.425 (2)C9—H930.960
C2—C31.365 (2)C10—C111.511 (2)
C3—C41.382 (2)C10—H100.980
C3—H30.930C11—H1110.960
C4—C51.366 (2)C11—H1120.960
C6—C71.512 (2)C11—H1130.960
C6—H610.960
C1—N1—C5120.76 (13)N2—C7—C8111.82 (12)
C7—N2—C10117.47 (11)N2—C7—H7108.5
C7—N2—H201108.2C6—C7—C8112.20 (14)
C7—N2—H202107.5C6—C7—H7108.7
C10—N2—H201107.6C8—C7—H7108.6
C10—N2—H202108.8C7—C8—H81109.9
H201—N2—H202106.8C7—C8—H82109.8
O1—C1—N1119.02 (13)C7—C8—H83108.7
O1—C1—C2123.84 (14)H81—C8—H82109.5
N1—C1—C2117.14 (13)H81—C8—H83109.5
Cl1—C2—C1118.58 (12)H82—C8—H83109.5
Cl1—C2—C3120.48 (12)C10—C9—H91109.7
C1—C2—C3120.93 (15)C10—C9—H92109.0
C2—C3—C4119.79 (14)C10—C9—H93109.7
C2—C3—H3120.1H91—C9—H92109.5
C4—C3—H3120.1H91—C9—H93109.5
Cl2—C4—C3120.26 (12)H92—C9—H93109.5
Cl2—C4—C5123.09 (13)N2—C10—C9110.68 (12)
C3—C4—C5116.66 (14)N2—C10—C11108.09 (13)
Cl3—C5—N1115.00 (12)N2—C10—H10108.1
Cl3—C5—C4120.30 (13)C9—C10—C11112.20 (14)
N1—C5—C4124.70 (15)C9—C10—H10108.9
C7—C6—H61108.8C11—C10—H10108.8
C7—C6—H62110.2C10—C11—H111108.9
C7—C6—H63109.4C10—C11—H112109.8
H61—C6—H62109.5C10—C11—H113109.7
H61—C6—H63109.5H111—C11—H112109.5
H62—C6—H63109.5H111—C11—H113109.5
N2—C7—C6106.86 (13)H112—C11—H113109.5
C1—N1—C5—Cl3−178.90 (11)N1—C1—C2—Cl1−179.19 (11)
C1—N1—C5—C40.7 (2)N1—C1—C2—C31.5 (2)
C5—N1—C1—O1178.24 (13)Cl1—C2—C3—C4−179.77 (12)
C5—N1—C1—C2−1.6 (2)C1—C2—C3—C4−0.4 (2)
C7—N2—C10—C9−62.42 (16)C2—C3—C4—Cl2179.30 (12)
C7—N2—C10—C11174.34 (12)C2—C3—C4—C5−0.5 (2)
C10—N2—C7—C6−176.04 (12)Cl2—C4—C5—Cl30.2 (2)
C10—N2—C7—C8−52.90 (18)Cl2—C4—C5—N1−179.41 (12)
O1—C1—C2—Cl11.0 (2)C3—C4—C5—Cl3179.98 (9)
O1—C1—C2—C3−178.36 (14)C3—C4—C5—N10.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H201···O10.961.942.8803 (15)166
N2—H201···N10.962.533.2556 (16)133
N2—H202···O1i0.961.862.7424 (16)152

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2076).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Baughman, R. G. (1989). J. Agric. Food Chem.37, 1505–1507.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. L., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Fakhraian, H., Moghimi, A., Ghadiri, H., Dehnavi, M. A. & Sadeghi, M. (2004). Org. Process Res. Dev.8, 680–684.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fox, A. M., Haller, W. T., Getsinger, K. D. & Petty, D. G. (2002). Pest Manag. Sci.58, 677–686. [PubMed]
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Version 3.7.0. Rigaku/MSC, The Woodlands, Texas, USA.
  • Zheng, H., Liu, Y. K., Li, Y. B., Xiao, L. & Xu, Z. Y. (2006). Chin. J. Pest. Sci.9, 215–219.
  • Zheng, H., Liu, Y.-K., Xu, D.-Q. & Xu, Z.-Y. (2006a). Acta Cryst. E62, o1532–o1533.
  • Zheng, H., Liu, Y.-K., Xu, D.-Q. & Xu, Z.-Y. (2006b). Acta Cryst. E62, o3101–o3102.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography