PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o375.
Published online 2008 January 4. doi:  10.1107/S160053680706758X
PMCID: PMC2960273

Monoclinic form of 1,2,4,5-tetra­cyclo­hexyl­benzene

Abstract

The mol­ecule of the title compound, C30H46, has a crystallographically imposed inversion center and the cyclo­hexyl groups are oriented with their methine H atoms pointing towards one another (H(...)H = 1.99 Å). The cyclohexyl groups adopt chair conformations. A significant C—H(...)π inter­action assembles mol­ecules into layers parallel to (100).

Related literature

For related structures, see: Mague et al. (2008a [triangle],b [triangle]); Vilardo et al. (2000 [triangle]). For related literature, see: Koudelka et al. (1985 [triangle]); Saito et al. (2004 [triangle]); Schweiger et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o375-scheme1.jpg

Experimental

Crystal data

  • C30H46
  • M r = 406.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o375-efi1.jpg
  • a = 10.3868 (7) Å
  • b = 10.1434 (7) Å
  • c = 11.5419 (8) Å
  • β = 93.314 (1)°
  • V = 1213.99 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.06 mm−1
  • T = 100 (2) K
  • 0.24 × 0.21 × 0.11 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002 [triangle]) T min = 0.975, T max = 0.993
  • 10421 measured reflections
  • 2805 independent reflections
  • 2460 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.126
  • S = 1.04
  • 2805 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus (Bruker 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2000 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706758X/gk2127sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706758X/gk2127Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Chemistry Department of Tulane University for support of the X-ray laboratory, and the Louisiana Board of Regents through the Louisiana Educational Quality Support Fund [grant LEQSF (2003–2003)-ENH-TR-67] for the purchase of the APEX diffractometer.

supplementary crystallographic information

Comment

Poly(cyclohexyl)benzenes have been used in the synthesis of a variety of sterically bulky protecting groups (Koudelka et al., 1985); Saito et al., 2004; Vilardo et al., 2000; Schweiger et al., 2001). Crystallization of 1,2,4,5-tetracylohexylbenzene (C30H46) from hot methylcyclohexane forms colorless needle-shaped crystals together with a smaller quantity having a distinctly different block-shaped morphology. The latter is monoclinic with the molecule having crystallographically imposed centrosymmetry. The cyclohexyl rings adopt the chair conformation and are oriented with their methine hydrogen atoms pointed towards one another (H···H distance 1.99 Å). This contrasts with the structure of 1-bromo-2,4,6-tricyclohexylbenzene (Mague et al., 2008b) where the methine hydrogen atoms of the meta-disposed cyclohexyl groups point towards the intervening ring substituent. This is presumably to minimize intramolecular contacts between the ortho-disposed cyclohexyl rings. Indeed, there are very few close contacts involving these substituents, the shortest being H4···H10 (1.99 Å), H3···H5a (2.18 Å) and H3···H11a' (2.07 Å). The plane defined by the atoms C5, C6, C8, C9 ("seat" of the chair) is inclined to the plane of the aromatic ring by 79.0 (2)° while that for the other cyclohexyl ring (C11, C12, C14, C15) is inclined at an angle of only 61.7 (2)°. A significant C—H···π interaction occurs between C6—H6A and the center of gravity (Cg) of the aromatic ring in the molecule at 1 - x, 1/2 + y, 0.5 - z where the H—Cg distance is 2.62 Å and the C—H···Cg angle is 150°. This interaction forms layers of molecules parallel to (100) at approximately x = 0.5.

Experimental

A mixture of chlorocyclohexane (125 ml, 1.05 mol) and benzene (9 ml, 0.1 mol) in a 250 ml 3-necked flask was cooled to -40° C and mechanically stirred while anhydrous AlCl3 (6.6 g, 0.05 mol) was added in portions over a 20 min. period. The mixture was allowed to slowly warm to -15° C and the stirring continued for 2 h. The resulting yellow-orange mixture was quenched by pouring it over 800 g of ice and, after thawing, was filtered. The organic layer of the filtrate was separated off, washed several times with water and reduced to a small volume under reduced pressure. After standing for 1 week, a precipitate formed which was filtered off, washed with 10% aqueous HCl and collected by filtration to provide 16.0 g (40%) of white solid (M.p. 549–550 K, bulk sample). 1H NMR (δ, CDCl3): 1.4 (20H, br multiplet), 1.8 (20H, br multiplet),2.7 (4H, multiplet), 7.2 (2H, s). 13C NMR (δ, CDCl3): 26.59, 27.56, 34.97, 123.25, 141.8.

Refinement

H-atoms were placed in calculated positions (C–H = 0.95 - 0.98 Å) and refined as riding on their carriers with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H-atoms are represented by spheres of arbitrary radius. Primed atoms are related to unprimed atoms by the symmetry operation 0.5 - x, -y, -z

Crystal data

C30H46F000 = 452
Mr = 406.67Dx = 1.113 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6595 reflections
a = 10.3868 (7) Åθ = 2.7–28.3º
b = 10.1434 (7) ŵ = 0.06 mm1
c = 11.5419 (8) ÅT = 100 (2) K
β = 93.314 (1)ºBlock, colorless
V = 1213.99 (14) Å30.24 × 0.21 × 0.11 mm
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer2805 independent reflections
Radiation source: fine-focus sealed tube2460 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.019
Detector resolution: 0 pixels mm-1θmax = 27.6º
T = 100(2) Kθmin = 2.0º
ω scansh = −13→13
Absorption correction: multi-scan(SADABS; Sheldrick, 2002)k = −13→13
Tmin = 0.975, Tmax = 0.993l = −14→14
10421 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.126  w = 1/[σ2(Fo2) + (0.0727P)2 + 0.3565P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2805 reflectionsΔρmax = 0.39 e Å3
136 parametersΔρmin = −0.21 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The diffraction data were collected in three sets of 606 frames (ω scans, 0.3°/scan) at [var phi] settings of 0, 120 and 240°.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.62897 (10)−0.01942 (10)0.04453 (8)0.0136 (2)
C20.57336 (10)0.10675 (10)0.04764 (9)0.0144 (2)
C30.44681 (10)0.12214 (10)0.00191 (9)0.0152 (2)
H30.41010.20790.00250.018*
C40.64402 (10)0.22668 (10)0.09843 (9)0.0147 (2)
H40.72480.19470.14080.018*
C50.56481 (11)0.30053 (11)0.18625 (10)0.0202 (2)
H5A0.48270.33080.14720.024*
H5B0.54380.23960.24940.024*
C60.63818 (11)0.41900 (11)0.23785 (10)0.0207 (3)
H6A0.58330.46630.29150.025*
H6B0.71650.38820.28290.025*
C70.67666 (12)0.51267 (11)0.14301 (10)0.0225 (3)
H7A0.72800.58610.17830.027*
H7B0.59810.55060.10340.027*
C80.75542 (11)0.44235 (12)0.05420 (10)0.0228 (3)
H8A0.83900.41410.09180.027*
H8B0.77340.5043−0.00920.027*
C90.68369 (11)0.32171 (11)0.00324 (9)0.0185 (2)
H9A0.73990.2747−0.04950.022*
H9B0.60570.3512−0.04290.022*
C100.76656 (9)−0.04649 (10)0.09169 (9)0.0142 (2)
H100.81660.03700.08400.017*
C110.83559 (10)−0.15393 (11)0.02505 (10)0.0194 (2)
H11A0.7864−0.23740.02830.023*
H11B0.8383−0.1277−0.05740.023*
C120.97328 (10)−0.17627 (12)0.07605 (10)0.0225 (3)
H12A1.0137−0.24870.03350.027*
H12B1.0249−0.09540.06610.027*
C130.97401 (11)−0.21099 (11)0.20452 (11)0.0223 (3)
H13A1.0641−0.22100.23610.027*
H13B0.9293−0.29610.21400.027*
C140.90724 (11)−0.10416 (12)0.27195 (10)0.0211 (3)
H14A0.9570−0.02110.26890.025*
H14B0.9049−0.13090.35430.025*
C150.76953 (10)−0.08069 (11)0.22168 (9)0.0176 (2)
H15A0.7303−0.00760.26430.021*
H15B0.7174−0.16090.23270.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0136 (5)0.0149 (5)0.0123 (4)−0.0003 (4)−0.0001 (4)0.0019 (4)
C20.0159 (5)0.0138 (5)0.0134 (5)−0.0014 (4)−0.0002 (4)0.0003 (4)
C30.0167 (5)0.0126 (5)0.0161 (5)0.0017 (4)−0.0004 (4)0.0011 (4)
C40.0148 (5)0.0121 (5)0.0169 (5)−0.0006 (4)−0.0022 (4)−0.0004 (4)
C50.0215 (5)0.0203 (5)0.0192 (5)−0.0063 (4)0.0045 (4)−0.0042 (4)
C60.0224 (5)0.0199 (5)0.0198 (5)−0.0033 (4)0.0025 (4)−0.0067 (4)
C70.0268 (6)0.0135 (5)0.0267 (6)−0.0019 (4)−0.0032 (5)−0.0019 (4)
C80.0267 (6)0.0217 (6)0.0203 (5)−0.0103 (5)0.0022 (4)0.0002 (4)
C90.0194 (5)0.0192 (5)0.0171 (5)−0.0044 (4)0.0017 (4)−0.0018 (4)
C100.0127 (5)0.0132 (5)0.0164 (5)0.0001 (4)−0.0013 (4)0.0004 (4)
C110.0153 (5)0.0216 (5)0.0208 (5)0.0024 (4)−0.0012 (4)−0.0041 (4)
C120.0139 (5)0.0243 (6)0.0291 (6)0.0034 (4)0.0008 (4)−0.0051 (5)
C130.0150 (5)0.0189 (5)0.0321 (6)0.0022 (4)−0.0052 (4)0.0022 (5)
C140.0178 (5)0.0249 (6)0.0198 (5)0.0013 (4)−0.0045 (4)0.0022 (4)
C150.0148 (5)0.0209 (5)0.0167 (5)0.0023 (4)−0.0011 (4)0.0024 (4)

Geometric parameters (Å, °)

C1—C3i1.3941 (14)C8—H8B0.9900
C1—C21.4053 (14)C9—H9A0.9900
C1—C101.5245 (13)C9—H9B0.9900
C2—C31.3967 (14)C10—C111.5353 (14)
C2—C41.5207 (14)C10—C151.5384 (14)
C3—C1i1.3941 (14)C10—H101.0000
C3—H30.9500C11—C121.5316 (14)
C4—C91.5357 (14)C11—H11A0.9900
C4—C51.5368 (14)C11—H11B0.9900
C4—H41.0000C12—C131.5237 (17)
C5—C61.5255 (15)C12—H12A0.9900
C5—H5A0.9900C12—H12B0.9900
C5—H5B0.9900C13—C141.5243 (16)
C6—C71.5203 (16)C13—H13A0.9900
C6—H6A0.9900C13—H13B0.9900
C6—H6B0.9900C14—C151.5308 (14)
C7—C81.5250 (17)C14—H14A0.9900
C7—H7A0.9900C14—H14B0.9900
C7—H7B0.9900C15—H15A0.9900
C8—C91.5322 (15)C15—H15B0.9900
C8—H8A0.9900
C3i—C1—C2117.82 (9)C4—C9—H9A109.3
C3i—C1—C10119.96 (9)C8—C9—H9B109.3
C2—C1—C10122.21 (9)C4—C9—H9B109.3
C3—C2—C1118.12 (9)H9A—C9—H9B107.9
C3—C2—C4118.62 (9)C1—C10—C11113.85 (8)
C1—C2—C4123.26 (9)C1—C10—C15110.75 (8)
C1i—C3—C2124.04 (10)C11—C10—C15110.17 (9)
C1i—C3—H3118.0C1—C10—H10107.3
C2—C3—H3118.0C11—C10—H10107.3
C2—C4—C9111.71 (8)C15—C10—H10107.3
C2—C4—C5112.29 (8)C12—C11—C10111.42 (9)
C9—C4—C5110.00 (9)C12—C11—H11A109.3
C2—C4—H4107.5C10—C11—H11A109.3
C9—C4—H4107.5C12—C11—H11B109.3
C5—C4—H4107.5C10—C11—H11B109.3
C6—C5—C4111.54 (9)H11A—C11—H11B108.0
C6—C5—H5A109.3C13—C12—C11111.12 (9)
C4—C5—H5A109.3C13—C12—H12A109.4
C6—C5—H5B109.3C11—C12—H12A109.4
C4—C5—H5B109.3C13—C12—H12B109.4
H5A—C5—H5B108.0C11—C12—H12B109.4
C7—C6—C5110.94 (9)H12A—C12—H12B108.0
C7—C6—H6A109.5C12—C13—C14110.84 (9)
C5—C6—H6A109.5C12—C13—H13A109.5
C7—C6—H6B109.5C14—C13—H13A109.5
C5—C6—H6B109.5C12—C13—H13B109.5
H6A—C6—H6B108.0C14—C13—H13B109.5
C6—C7—C8111.42 (9)H13A—C13—H13B108.1
C6—C7—H7A109.3C13—C14—C15111.09 (9)
C8—C7—H7A109.3C13—C14—H14A109.4
C6—C7—H7B109.3C15—C14—H14A109.4
C8—C7—H7B109.3C13—C14—H14B109.4
H7A—C7—H7B108.0C15—C14—H14B109.4
C7—C8—C9111.33 (9)H14A—C14—H14B108.0
C7—C8—H8A109.4C14—C15—C10111.74 (9)
C9—C8—H8A109.4C14—C15—H15A109.3
C7—C8—H8B109.4C10—C15—H15A109.3
C9—C8—H8B109.4C14—C15—H15B109.3
H8A—C8—H8B108.0C10—C15—H15B109.3
C8—C9—C4111.80 (9)H15A—C15—H15B107.9
C8—C9—H9A109.3
C3i—C1—C2—C3−1.33 (16)C7—C8—C9—C4−54.77 (12)
C10—C1—C2—C3179.74 (9)C2—C4—C9—C8−179.76 (9)
C3i—C1—C2—C4178.54 (9)C5—C4—C9—C854.84 (12)
C10—C1—C2—C4−0.39 (15)C3i—C1—C10—C1134.20 (13)
C1—C2—C3—C1i1.42 (17)C2—C1—C10—C11−146.89 (10)
C4—C2—C3—C1i−178.46 (9)C3i—C1—C10—C15−90.60 (11)
C3—C2—C4—C9−73.47 (12)C2—C1—C10—C1588.31 (12)
C1—C2—C4—C9106.67 (11)C1—C10—C11—C12179.78 (9)
C3—C2—C4—C550.66 (12)C15—C10—C11—C12−55.11 (12)
C1—C2—C4—C5−129.21 (10)C10—C11—C12—C1356.53 (13)
C2—C4—C5—C6178.97 (9)C11—C12—C13—C14−56.64 (13)
C9—C4—C5—C6−55.96 (12)C12—C13—C14—C1556.22 (12)
C4—C5—C6—C756.89 (12)C13—C14—C15—C10−55.83 (12)
C5—C6—C7—C8−56.00 (12)C1—C10—C15—C14−178.25 (9)
C6—C7—C8—C954.96 (12)C11—C10—C15—C1454.90 (12)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6A···Cgii0.992.623.520 (2)150

Symmetry codes: (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2127).

References

  • Bruker (2000). SMART (Version 5.625) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). SAINT-Plus Version 7.03. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Koudelka, J., Saman, J. & Exner, O. (1985). Collect. Czech. Chem. Commun.50, 208–214.
  • Mague, J. T., Linhardt, L., Medina, I. & Fink, M. J. (2008a). Acta Cryst. E64, o376. [PMC free article] [PubMed]
  • Mague, J. T., Linhardt, L., Medina, I. & Fink, M. J. (2008b). Acta Cryst. E64, o335. [PMC free article] [PubMed]
  • Saito, M., Tokitoh, N. & Okazaki, R. (2004). J. Am. Chem. Soc.126, 15572–15582. [PubMed]
  • Schweiger, S. W., Salberg, M. M., Pulvirenti, A. L., Freeman, E. E., Fanwick, P. E. & Rothwell, I. P. (2001). J. Chem. Soc. Dalton Trans. pp. 2020–2031.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (2002). SADABS, Version 2.05. University of Göttingen, Germany.
  • Vilardo, J. S., Salberg, M. M., Parker, J. R., Fanwick, P. E. & Rothwell, I. P. (2000). Inorg. Chim. Acta, 299, 135–141.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography