PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o424.
Published online 2008 January 11. doi:  10.1107/S160053680800055X
PMCID: PMC2960267

1,3,5-Trichloro-2-methoxy­benzene

Abstract

The meth­oxy group of the title compound, C7H5Cl3O, is rotated out of the plane of the aromatic ring system, with a dihedral angle of 84.11 (13)°, due to the two bulky ortho-chloro substituents.

Related literature

For similar structures of anisoles with two ortho-chloro substituents, see: Rissanen et al. (1987 [triangle]); Weller & Gerstner (1995 [triangle]); Wieczorek (1980 [triangle]). For other related literature, see: Brownlee et al. (1993 [triangle]); Curtis et al. (1972 [triangle]); Iimura et al. (1984 [triangle]); Kolehmainen & Knuutinen (1983 [triangle]); Oswald et al. (2005 [triangle]); Pereira et al. (2000 [triangle]); Rissanen et al. (1988 [triangle]); Vlachos et al. (2007 [triangle]); Zhang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o424-scheme1.jpg

Experimental

Crystal data

  • C7H5Cl3O
  • M r = 211.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o424-efi1.jpg
  • a = 14.7538 (5) Å
  • b = 3.9846 (2) Å
  • c = 15.4810 (7) Å
  • β = 115.5031 (19)°
  • V = 821.42 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.05 mm−1
  • T = 90.0 (2) K
  • 0.25 × 0.25 × 0.12 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997 [triangle]) T min = 0.780, T max = 0.885
  • 13489 measured reflections
  • 1888 independent reflections
  • 1558 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.070
  • S = 1.13
  • 1888 reflections
  • 101 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 1994 [triangle]); software used to prepare material for publication: SHELX97 and local procedures.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680800055X/om2200sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800055X/om2200Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by grant Nos. ES05605, ES012475 and ES013661 from the National Institute of Environmental Health Sciences, NIH.

supplementary crystallographic information

Comment

Chlorinated anisoles are persistent environmental pollutants known for their toxicity and tendency to bioaccumulate (Brownlee et al., 1993). Especially anisoles with chlorine substitution in the 2- and 6- position are a well known cause for off-flavors in water, fish and chicken eggs (Brownlee et al., 1993; Curtis et al., 1972; Zhang et al., 2006). The title compound is a major contributor to "cork taint", a well known off-flavor in the wine industry (Pereira et al., 2000; Vlachos et al., 2007). We herin report the molecular structure of the title compound to aid in structure activity relationship (SAR) studies of the toxicity of chlorinated anisoles.

It has been reported that ortho-disubstitution causes drastic changes in the spatial arrangement of the methoxy group of chlorinated anisols, both in solution and in the solid state (Kolehmainen & Knuutinen, 1983; Rissanen et al., 1987). In the title compound, the methoxy group was rotated out of the plane of the phenyl ring with a dihedral angle of 84.11 (13)°. The angle was calculated between the plane of the benzene ring (C1 through C6) and the methoxy group (atoms C1,O1,C7). Comparable anisoles have similar dihedral angles ranging from 76.8 to 92.1° (Iimura et al., 1984; Rissanen et al., 1987; Rissanen et al., 1988; Weller & Gerstner, 1995; Wieczorek, 1980). In contrast, the methoxy group of non-ortho substituted anisoles lies within the plane of the phenyl ring.

The O—CH3 bond length of the title compound (O1—C7: 1.446 (2) Å) was larger compared to non-ortho substituted anisoles, which have a mean bond length of 1.422 Å. Furthermore, the CAr—O—CH3 bond angle of the title compound (C1—O1—C7: 114.60 (15)°) was smaller compared to non-ortho substituted anisoles, which is on average 117.73°. Chlorine disubstitution ortho to an aromatic methoxy group had a similar effect on the O—CH3 bond length and the CAr—O—CH3 bond angles in several structurally related compounds (Iimura et al., 1984; Rissanen et al., 1987; Rissanen et al., 1988; Weller & Gerstner, 1995; Wieczorek, 1980).

Ortho disubstitution forced the methoxy group out of the plane of the aromatic ring, so that the CH3 group (C7) of the title compound was located 1.192 (4) Å above and the O1 atom -0.079 (3)Å below the calculated least-squares plane of the benzene ring. In other, structurally related compounds with ortho dichloro substitution, the O atoms are positioned 0.030 to 0.133 Å below and the methoxy C atoms 1.119 to 1.252 Å above the calculated last-squares plane (Iimura et al., 1984; Rissanen et al., 1987; Rissanen et al., 1988; Weller & Gerstner, 1995; Wieczorek, 1980). Overall, this difference in the spatial arrangement of the methoxy group is thought to explain the off-flavor of anisoles with ortho disubstitution.

Experimental

Crystals of the title compound suitable for crystal structure analysis were obtained from TCI America (Portland, Oregon, USA.).

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.98 Å (CMeH) and 0.95 Å (CArH) with Uiso(H) values set to either 1.5Ueq (CMeH) or 1.2Ueq (CArH) of the attached C atom respectively.

Figures

Fig. 1.
View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C7H5Cl3OF000 = 424
Mr = 211.46Dx = 1.710 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2156 reflections
a = 14.7538 (5) Åθ = 1.0–27.5º
b = 3.9846 (2) ŵ = 1.05 mm1
c = 15.4810 (7) ÅT = 90.0 (2) K
β = 115.5031 (19)ºBlock, colourless
V = 821.42 (6) Å30.25 × 0.25 × 0.12 mm
Z = 4

Data collection

Nonius KappaCCD area-detector diffractometer1888 independent reflections
Radiation source: fine-focus sealed tube1558 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.020
Detector resolution: 18 pixels mm-1θmax = 27.5º
T = 90.0(2) Kθmin = 1.6º
ω scans at fixed χ = 55°h = −18→19
Absorption correction: multi-scan(SCALEPACK; Otwinowski & Minor, 1997)k = −5→5
Tmin = 0.780, Tmax = 0.885l = −20→19
13489 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.070  w = 1/[σ2(Fo2) + (0.0244P)2 + 0.6499P] where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
1888 reflectionsΔρmax = 0.35 e Å3
101 parametersΔρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.65436 (3)0.31728 (13)0.83292 (3)0.02202 (13)
Cl20.36963 (3)0.90882 (13)0.91077 (3)0.01965 (12)
Cl30.32350 (3)0.84337 (13)0.54775 (3)0.02053 (13)
O10.51708 (9)0.4751 (4)0.63059 (9)0.0189 (3)
C10.48575 (13)0.5887 (5)0.69659 (13)0.0161 (4)
C20.54027 (13)0.5242 (5)0.79404 (13)0.0161 (4)
C30.50643 (13)0.6209 (5)0.86111 (13)0.0162 (4)
H30.54470.57530.92730.019*
C40.41531 (14)0.7858 (5)0.82874 (13)0.0164 (4)
C50.35818 (13)0.8564 (5)0.73309 (13)0.0158 (4)
H50.29580.97050.71260.019*
C60.39426 (13)0.7561 (5)0.66748 (12)0.0147 (4)
C70.58710 (16)0.6940 (6)0.61549 (15)0.0253 (5)
H7A0.55650.91560.59510.038*
H7B0.60390.59880.56590.038*
H7C0.64830.71590.67530.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0146 (2)0.0252 (3)0.0231 (2)0.00407 (19)0.00509 (19)−0.0021 (2)
Cl20.0178 (2)0.0266 (3)0.0163 (2)0.00018 (18)0.00906 (18)−0.00204 (18)
Cl30.0190 (2)0.0279 (3)0.0139 (2)0.00294 (19)0.00632 (18)0.00251 (18)
O10.0171 (7)0.0230 (8)0.0205 (7)−0.0022 (6)0.0119 (6)−0.0046 (6)
C10.0160 (9)0.0152 (10)0.0188 (9)−0.0037 (7)0.0092 (7)−0.0036 (7)
C20.0123 (8)0.0142 (10)0.0208 (9)−0.0003 (7)0.0061 (7)−0.0008 (7)
C30.0152 (9)0.0177 (10)0.0129 (8)−0.0030 (7)0.0035 (7)−0.0009 (7)
C40.0177 (9)0.0160 (10)0.0184 (9)−0.0037 (7)0.0106 (8)−0.0031 (7)
C50.0128 (8)0.0155 (10)0.0192 (9)−0.0002 (7)0.0069 (7)0.0005 (7)
C60.0138 (9)0.0168 (10)0.0120 (8)−0.0023 (7)0.0040 (7)0.0002 (7)
C70.0273 (11)0.0255 (11)0.0310 (11)−0.0054 (9)0.0201 (9)−0.0052 (9)

Geometric parameters (Å, °)

C1—O11.367 (2)Cl3—C61.7264 (18)
C1—C21.394 (3)C4—C51.381 (3)
C1—C61.395 (3)C5—C61.393 (3)
C2—C31.386 (3)C5—H50.9500
C2—Cl11.7329 (19)O1—C71.446 (2)
C3—C41.382 (3)C7—H7A0.9800
C3—H30.9500C7—H7B0.9800
Cl2—C41.7447 (18)C7—H7C0.9800
O1—C1—C2121.63 (16)C4—C5—H5120.8
O1—C1—C6120.55 (16)C6—C5—H5120.8
C2—C1—C6117.70 (16)C5—C6—C1121.46 (16)
C3—C2—C1122.21 (17)C5—C6—Cl3118.74 (14)
C3—C2—Cl1118.77 (14)C1—C6—Cl3119.79 (14)
C1—C2—Cl1119.02 (14)C1—O1—C7114.60 (15)
C4—C3—C2117.92 (17)O1—C7—H7A109.5
C4—C3—H3121.0O1—C7—H7B109.5
C2—C3—H3121.0H7A—C7—H7B109.5
C5—C4—C3122.34 (17)O1—C7—H7C109.5
C5—C4—Cl2118.33 (14)H7A—C7—H7C109.5
C3—C4—Cl2119.33 (14)H7B—C7—H7C109.5
C4—C5—C6118.36 (17)
O1—C1—C2—C3−176.17 (17)Cl2—C4—C5—C6−179.55 (14)
C6—C1—C2—C3−0.1 (3)C4—C5—C6—C1−0.1 (3)
O1—C1—C2—Cl14.0 (3)C4—C5—C6—Cl3−179.94 (14)
C6—C1—C2—Cl1−179.91 (14)O1—C1—C6—C5176.18 (17)
C1—C2—C3—C40.1 (3)C2—C1—C6—C50.1 (3)
Cl1—C2—C3—C4179.96 (15)O1—C1—C6—Cl3−4.0 (3)
C2—C3—C4—C5−0.2 (3)C2—C1—C6—Cl3179.92 (14)
C2—C3—C4—Cl2179.51 (15)C2—C1—O1—C7−86.2 (2)
C3—C4—C5—C60.1 (3)C6—C1—O1—C797.9 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2200).

References

  • Brownlee, B. G., MacInnis, G. A. & Noton, L. R. (1993). Environ. Sci. Technol.27, 2450–2455.
  • Curtis, R. F., Land, D. G., Griffiths, N. M., Gee, M., Robinson, D., Peel, J. L., Dennis, C. & Gee, J. M. (1972). Nature (London), 235, 223–224.
  • Iimura, Y., Sakurai, T., Asahi, K.-I., Takahashi, N. & Oka, H. (1984). Acta Cryst. C40, 2058–2061.
  • Kolehmainen, E. & Knuutinen, J. (1983). Org. Magn. Reson.21, 388–390.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Oswald, I. D. H., Allan, D. R., Day, G. M., Motherwell, W. D. S. & Parsons, S. (2005). Cryst. Growth Des.5, 1055–1071.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pereira, C. S., Marques, J. J. F. & San Romao, M. V. (2000). Crit. Rev. Microbiol.26, 147–162. [PubMed]
  • Rissanen, K., Valkonen, J. & Knuutinen, J. (1987). Acta Cryst. C43, 1966–1968.
  • Rissanen, K., Valkonen, J. & Mannila, B. (1988). Acta Cryst. C44, 684–686.
  • Sheldrick, G. M. (1994). SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vlachos, P., Kampioti, A., Kornaros, M. & Lyberatos, G. (2007). Eur. Food Res. Technol.225, 653–663.
  • Weller, F. & Gerstner, E. (1995). Z. Kristallogr.210, 629–629.
  • Wieczorek, M. W. (1980). Acta Cryst. B36, 1515–1517.
  • Zhang, L., Hu, R. & Yang, Z. (2006). Water Sci. Technol.54, 335–344. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography