PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m348.
Published online 2008 January 16. doi:  10.1107/S1600536808000044
PMCID: PMC2960263

Aqua­bis(2-chloro­acetato-κO)(1,10-phenanthroline-κ2 N,N′)copper(II)

Abstract

In the title complex, [Cu(C2H2ClO2)2(C12H8N2)(H2O)], the CuII ion is five-coordinated by two N atoms [Cu—N = 2.005 (2) and 2.029 (2) Å] from the 1,10-phenanthroline ligand, two O atoms [Cu—O = 1.943 (2)–1.966 (2) Å] from two 2-chloro­acetate ligands and one water mol­ecule [Cu—O = 2.253 (2) Å] in a distorted square-pyramidal geometry. The crystal structure exhibits inter­molecular O—H(...)O hydrogen bonds, short Cl(...)Cl contacts [3.334 (1) Å] and π–π inter­actions [centroid–centroid distance 3.621 (11) Å].

Related literature

For related crystal structures, see: Sieroń (2007 [triangle]); Czylkowska et al. (2004 [triangle]); Chen et al. (1996 [triangle]); Overgaard et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m348-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2H2ClO2)2(C12H8N2)(H2O)]
  • M r = 448.73
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m348-efi1.jpg
  • a = 8.7730 (6) Å
  • b = 9.2382 (7) Å
  • c = 11.4492 (8) Å
  • α = 96.2180 (10)°
  • β = 106.6760 (10)°
  • γ = 97.9190 (10)°
  • V = 869.66 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.59 mm−1
  • T = 273 (2) K
  • 0.38 × 0.25 × 0.19 mm

Data collection

  • Bruker SMART CCD area detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.583, T max = 0.752
  • 4610 measured reflections
  • 3057 independent reflections
  • 2837 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.074
  • S = 1.00
  • 3057 reflections
  • 235 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808000044/cv2370sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000044/cv2370Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Postgraduate Foundation of Taishan University for financial support.

supplementary crystallographic information

Comment

2-Chloroacetic acid and its derivatives are often used in the synthesis of mononuclear monomeric (Sieroń, 2007; Czylkowska et al., 2004) and polymeric compounds (Chen et al., 1996; Overgaard et al., 2003). In our search for new topogical structures, we selected the copper(II) ion with 2-chloroacetic acid in the presence of 1,10-phenanthroline as a co-ligand, and obtained the title compound, (I).

In (I) (Fig. 1), Cu1 exhibits a five-coordinated square-pyramidal environment, formed by two O atoms from two carboxyl ligands (Cu1—O1 1.943 (2) Å, Cu1—O3 1.966 (2) Å), one water molecule (Cu1—O5 2.243 (5) Å) and two N atoms (Cu1—N1 2.029 (2) Å, Cu1—N2 2.005 (2) Å) from 1,10-phenanthroline ligand.

In the crystal structure, there exist short intermolecular Cl···Cl contacts (Table 1), π···π stacking interactions between the aromatic rings from neighbouring molecules (Table 1), and intermolecular O—H···O hydrogen bonds (Table 2), which link the molecules into centrosymmetric dimers.

Experimental

The reaction was carried out by the solvothermal method. 2-Chloroacetic acid (0.188 g, 2 mmol) and cupric acetate (0.199 g, 1 mmol) and 1,10-phenanthroline (0.180 g, 1 mmol) were added to the airtight vessel with 20 ml water. The resulting green solution was filtered. The filtrate was placed for sevaral days yielding blue block-shaped crystals.

The yield is 81% and elemental analysis: calc. for C16H14Cl2CuN2O5: C 42.82, H 3.14, N 6.24; found: C 42.55, H 3.39, N 6.32. The elemental analyses were performed with PERKIN ELMER MODEL 2400 SERIES II.

Refinement

All H atoms were found in Fourier difference map, but placed in idealized positions (C—H 0.93–0.97 Å, O—H 0.85 Å), with Uiso(H)=1.2Ueq of the parent atom.

Figures

Fig. 1.
The molecular structure of (I) with atomic numbering and 30% probability displacement ellipsoids.

Crystal data

[Cu(C2H2ClO2)2(C12H8N2)(H2O)]Z = 2
Mr = 448.73F000 = 454
Triclinic, P1Dx = 1.714 Mg m3
a = 8.7730 (6) ÅMo Kα radiation λ = 0.71073 Å
b = 9.2382 (7) ÅCell parameters from 3430 reflections
c = 11.4492 (8) Åθ = 2.5–28.2º
α = 96.2180 (10)ºµ = 1.59 mm1
β = 106.6760 (10)ºT = 273 (2) K
γ = 97.9190 (10)ºBlock, blue
V = 869.66 (11) Å30.38 × 0.25 × 0.19 mm

Data collection

Bruker SMART CCD area detector diffractometer3057 independent reflections
Radiation source: fine-focus sealed tube2837 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.015
T = 273(2) Kθmax = 25.1º
phi and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.583, Tmax = 0.752k = −8→10
4610 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.074  w = 1/[σ2(Fo2) + (0.043P)2 + 0.4807P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3057 reflectionsΔρmax = 0.30 e Å3
235 parametersΔρmin = −0.29 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.23816 (3)0.68495 (3)0.71095 (2)0.03304 (10)
Cl1−0.22927 (8)0.98116 (9)0.83337 (8)0.0671 (2)
Cl20.40479 (7)0.93989 (7)0.62804 (6)0.04661 (16)
O10.14841 (19)0.84228 (17)0.77963 (15)0.0421 (4)
O2−0.1084 (2)0.7271 (2)0.7366 (2)0.0635 (5)
O30.11593 (19)0.68927 (16)0.53849 (14)0.0408 (4)
O40.0053 (2)0.7855 (2)0.37496 (17)0.0622 (5)
O50.06637 (19)0.50494 (17)0.74928 (15)0.0430 (4)
H150.03120.41800.70910.052*
H16−0.01230.55170.73850.052*
N10.4251 (2)0.70913 (19)0.86886 (16)0.0328 (4)
N20.3550 (2)0.53104 (19)0.65745 (16)0.0334 (4)
C10.0003 (3)0.8353 (2)0.77567 (19)0.0365 (5)
C2−0.0300 (3)0.9841 (3)0.8242 (2)0.0400 (5)
H2A−0.00991.05430.77080.048*
H2B0.04641.01890.90570.048*
C30.1023 (3)0.7947 (2)0.4784 (2)0.0366 (5)
C40.2075 (3)0.9464 (3)0.5315 (2)0.0488 (6)
H4A0.15391.00310.57880.059*
H4B0.21710.99810.46390.059*
C50.4552 (3)0.7987 (3)0.9743 (2)0.0404 (5)
H5A0.38510.86400.98050.049*
C60.5887 (3)0.7988 (3)1.0767 (2)0.0486 (6)
H60.60710.86421.14900.058*
C70.6915 (3)0.7028 (3)1.0699 (2)0.0469 (6)
H70.77970.70141.13800.056*
C80.6639 (3)0.6057 (3)0.9596 (2)0.0388 (5)
C90.7622 (3)0.4983 (3)0.9421 (2)0.0479 (6)
H90.85210.49111.00670.057*
C100.7268 (3)0.4079 (3)0.8339 (3)0.0477 (6)
H100.79340.34010.82490.057*
C110.5883 (3)0.4140 (2)0.7322 (2)0.0387 (5)
C120.5395 (3)0.3200 (3)0.6177 (2)0.0453 (6)
H120.60110.25000.60280.054*
C130.4019 (3)0.3317 (3)0.5290 (2)0.0460 (6)
H130.36880.26900.45370.055*
C140.3111 (3)0.4378 (2)0.5512 (2)0.0390 (5)
H140.21680.44390.49010.047*
C150.4909 (2)0.5181 (2)0.74641 (19)0.0319 (4)
C160.5289 (2)0.6148 (2)0.86151 (19)0.0317 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.03296 (16)0.03095 (16)0.03298 (16)0.00803 (11)0.00661 (11)0.00203 (10)
Cl10.0439 (4)0.0748 (5)0.0858 (5)0.0241 (3)0.0227 (3)0.0012 (4)
Cl20.0413 (3)0.0447 (3)0.0484 (3)−0.0015 (2)0.0122 (3)−0.0006 (3)
O10.0360 (8)0.0378 (8)0.0516 (9)0.0094 (7)0.0135 (7)−0.0010 (7)
O20.0409 (10)0.0442 (10)0.0972 (16)0.0042 (8)0.0163 (10)−0.0071 (10)
O30.0474 (9)0.0287 (8)0.0373 (8)0.0040 (7)−0.0002 (7)0.0058 (6)
O40.0747 (13)0.0462 (10)0.0453 (10)0.0019 (9)−0.0113 (9)0.0129 (8)
O50.0435 (9)0.0342 (8)0.0493 (9)0.0040 (7)0.0130 (7)0.0051 (7)
N10.0344 (9)0.0302 (9)0.0328 (9)0.0031 (7)0.0105 (7)0.0032 (7)
N20.0359 (9)0.0312 (9)0.0328 (9)0.0052 (7)0.0109 (8)0.0037 (7)
C10.0357 (12)0.0380 (12)0.0352 (11)0.0099 (10)0.0078 (9)0.0069 (9)
C20.0376 (12)0.0416 (12)0.0415 (12)0.0122 (10)0.0117 (10)0.0041 (10)
C30.0399 (12)0.0330 (11)0.0340 (11)0.0085 (9)0.0069 (9)0.0025 (9)
C40.0540 (15)0.0334 (12)0.0501 (14)0.0061 (11)0.0024 (12)0.0077 (10)
C50.0457 (13)0.0362 (12)0.0372 (12)0.0049 (10)0.0129 (10)−0.0011 (9)
C60.0548 (15)0.0482 (14)0.0327 (12)−0.0027 (12)0.0063 (11)−0.0022 (10)
C70.0418 (13)0.0490 (14)0.0390 (12)−0.0038 (11)−0.0005 (10)0.0114 (11)
C80.0344 (11)0.0398 (12)0.0409 (12)0.0010 (9)0.0090 (9)0.0142 (10)
C90.0337 (12)0.0546 (15)0.0570 (15)0.0110 (11)0.0099 (11)0.0230 (12)
C100.0400 (13)0.0467 (14)0.0657 (16)0.0188 (11)0.0217 (12)0.0192 (12)
C110.0396 (12)0.0326 (11)0.0516 (13)0.0075 (9)0.0231 (10)0.0129 (10)
C120.0530 (15)0.0319 (12)0.0609 (15)0.0109 (10)0.0316 (13)0.0060 (10)
C130.0582 (15)0.0329 (12)0.0474 (14)0.0002 (11)0.0247 (12)−0.0048 (10)
C140.0436 (12)0.0339 (11)0.0363 (11)0.0008 (9)0.0121 (10)0.0005 (9)
C150.0326 (11)0.0288 (10)0.0370 (11)0.0040 (8)0.0145 (9)0.0080 (8)
C160.0302 (10)0.0313 (10)0.0341 (11)0.0024 (8)0.0107 (9)0.0091 (8)

Geometric parameters (Å, °)

Cu1—O11.9427 (15)C4—H4A0.9700
Cu1—O31.9657 (15)C4—H4B0.9700
Cu1—N22.0052 (18)C5—C61.399 (3)
Cu1—N12.0294 (18)C5—H5A0.9300
Cu1—O52.2531 (16)C6—C71.361 (4)
Cl1—C21.778 (2)C6—H60.9300
Cl1—Cl2i3.3340 (10)C7—C81.406 (3)
Cl2—C41.779 (3)C7—H70.9300
O1—C11.279 (3)C8—C161.398 (3)
O2—C11.226 (3)C8—C91.435 (3)
O3—C31.251 (3)C9—C101.346 (4)
O4—C31.231 (3)C9—H90.9300
O5—H150.8498C10—C111.434 (3)
O5—H160.8498C10—H100.9300
N1—C51.324 (3)C11—C151.398 (3)
N1—C161.357 (3)C11—C121.408 (3)
N2—C141.336 (3)C12—C131.363 (4)
N2—C151.357 (3)C12—H120.9300
C1—C21.514 (3)C13—C141.392 (3)
C2—H2A0.9700C13—H130.9300
C2—H2B0.9700C14—H140.9300
C3—C41.524 (3)C15—C161.434 (3)
Cl1···Cl2i3.334 (1)Cg1···Cg2ii3.621 (11)
O1—Cu1—O394.93 (7)H4A—C4—H4B107.7
O1—Cu1—N2173.08 (7)N1—C5—C6122.4 (2)
O3—Cu1—N291.04 (7)N1—C5—H5A118.8
O1—Cu1—N191.67 (7)C6—C5—H5A118.8
O3—Cu1—N1160.92 (7)C7—C6—C5119.7 (2)
N2—Cu1—N181.58 (7)C7—C6—H6120.2
O1—Cu1—O593.30 (6)C5—C6—H6120.2
O3—Cu1—O598.18 (6)C6—C7—C8119.7 (2)
N2—Cu1—O589.32 (7)C6—C7—H7120.1
N1—Cu1—O599.28 (7)C8—C7—H7120.1
C1—O1—Cu1125.47 (14)C16—C8—C7116.6 (2)
C3—O3—Cu1130.63 (14)C16—C8—C9118.6 (2)
Cu1—O5—H15127.2C7—C8—C9124.8 (2)
Cu1—O5—H1695.7C10—C9—C8121.3 (2)
H15—O5—H16108.2C10—C9—H9119.3
C5—N1—C16117.97 (19)C8—C9—H9119.3
C5—N1—Cu1129.49 (16)C9—C10—C11121.2 (2)
C16—N1—Cu1112.52 (13)C9—C10—H10119.4
C14—N2—C15118.05 (19)C11—C10—H10119.4
C14—N2—Cu1128.50 (16)C15—C11—C12116.5 (2)
C15—N2—Cu1113.32 (13)C15—C11—C10118.7 (2)
O2—C1—O1127.3 (2)C12—C11—C10124.8 (2)
O2—C1—C2121.8 (2)C13—C12—C11119.9 (2)
O1—C1—C2110.88 (19)C13—C12—H12120.0
C1—C2—Cl1113.88 (16)C11—C12—H12120.0
C1—C2—H2A108.8C12—C13—C14119.9 (2)
Cl1—C2—H2A108.8C12—C13—H13120.0
C1—C2—H2B108.8C14—C13—H13120.0
Cl1—C2—H2B108.8N2—C14—C13122.0 (2)
H2A—C2—H2B107.7N2—C14—H14119.0
O4—C3—O3123.8 (2)C13—C14—H14119.0
O4—C3—C4115.3 (2)N2—C15—C11123.6 (2)
O3—C3—C4120.9 (2)N2—C15—C16116.28 (18)
C3—C4—Cl2113.92 (17)C11—C15—C16120.1 (2)
C3—C4—H4A108.8N1—C16—C8123.6 (2)
Cl2—C4—H4A108.8N1—C16—C15116.28 (18)
C3—C4—H4B108.8C8—C16—C15120.1 (2)
Cl2—C4—H4B108.8
O3—Cu1—O1—C165.71 (18)C5—C6—C7—C80.8 (4)
N2—Cu1—O1—C1−144.9 (5)C6—C7—C8—C160.0 (3)
N1—Cu1—O1—C1−132.21 (18)C6—C7—C8—C9−179.0 (2)
O5—Cu1—O1—C1−32.81 (18)C16—C8—C9—C100.2 (3)
O1—Cu1—O3—C352.0 (2)C7—C8—C9—C10179.2 (2)
N2—Cu1—O3—C3−124.4 (2)C8—C9—C10—C11−0.7 (4)
N1—Cu1—O3—C3−57.7 (3)C9—C10—C11—C151.0 (3)
O5—Cu1—O3—C3146.1 (2)C9—C10—C11—C12−177.6 (2)
O1—Cu1—N1—C52.6 (2)C15—C11—C12—C13−1.2 (3)
O3—Cu1—N1—C5112.9 (2)C10—C11—C12—C13177.4 (2)
N2—Cu1—N1—C5−178.9 (2)C11—C12—C13—C140.7 (4)
O5—Cu1—N1—C5−91.01 (19)C15—N2—C14—C13−1.5 (3)
O1—Cu1—N1—C16−179.12 (14)Cu1—N2—C14—C13−177.15 (17)
O3—Cu1—N1—C16−68.8 (3)C12—C13—C14—N20.7 (4)
N2—Cu1—N1—C16−0.65 (14)C14—N2—C15—C110.9 (3)
O5—Cu1—N1—C1687.26 (14)Cu1—N2—C15—C11177.24 (16)
O1—Cu1—N2—C14−170.8 (5)C14—N2—C15—C16−176.64 (18)
O3—Cu1—N2—C14−21.29 (19)Cu1—N2—C15—C16−0.3 (2)
N1—Cu1—N2—C14176.37 (19)C12—C11—C15—N20.4 (3)
O5—Cu1—N2—C1476.88 (19)C10—C11—C15—N2−178.3 (2)
O1—Cu1—N2—C1513.4 (6)C12—C11—C15—C16177.90 (19)
O3—Cu1—N2—C15162.87 (14)C10—C11—C15—C16−0.8 (3)
N1—Cu1—N2—C150.53 (14)C5—N1—C16—C81.0 (3)
O5—Cu1—N2—C15−98.96 (14)Cu1—N1—C16—C8−177.50 (16)
Cu1—O1—C1—O25.6 (3)C5—N1—C16—C15179.16 (18)
Cu1—O1—C1—C2−172.99 (14)Cu1—N1—C16—C150.7 (2)
O2—C1—C2—Cl16.1 (3)C7—C8—C16—N1−1.0 (3)
O1—C1—C2—Cl1−175.31 (16)C9—C8—C16—N1178.1 (2)
Cu1—O3—C3—O4−170.39 (19)C7—C8—C16—C15−179.08 (19)
Cu1—O3—C3—C49.1 (3)C9—C8—C16—C150.0 (3)
O4—C3—C4—Cl2−147.4 (2)N2—C15—C16—N1−0.2 (3)
O3—C3—C4—Cl233.1 (3)C11—C15—C16—N1−177.89 (18)
C16—N1—C5—C6−0.1 (3)N2—C15—C16—C8178.01 (18)
Cu1—N1—C5—C6178.14 (17)C11—C15—C16—C80.3 (3)
N1—C5—C6—C7−0.8 (4)

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H15···O4iii0.851.962.796 (2)169

Symmetry codes: (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2370).

References

  • Chen, X. M., Tong, M. L., Wu, Y. L. & Luo, Y. J. (1996). J. Chem. Soc. Dalton Trans. pp. 2181–2182.
  • Czylkowska, A., Kruszynski, R., Czakis-Sulikowska, D. & Bartczak, T. J. (2004). J. Coord. Chem.57, 239–249.
  • Overgaard, J., Larsen, F. K., Schiott, B. & Lversen, B. B. (2003). J. Am. Chem. Soc.125, 11088–11098. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.
  • Sieroń, L. (2007). Acta Cryst. E63, m1659–m1661.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography