PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m300–m301.
Published online 2008 January 4. doi:  10.1107/S1600536807068407
PMCID: PMC2960257

Dichlorido(dimethyl­glyoximato-κ2 N,N′)(dimethyl­glyoxime-κ2 N,N′)cobalt(III)

Abstract

In the title compound, [Co(C4H7N2O2)Cl2(C4H8N2O2)], the CoIII ion has a distorted octa­hedral coordination environment. The equatorial plane consists of four N atoms, two each from the dimethyl­glyoxime and dimethyl­glyoximate ligands, while the two axial positions are occupied by two chloride ions. Strong intra­molecular O—H(...)O hydrogen bonds are observed between the dimethyl­glyoxime and dimethyl­glyoximate ligands. Mol­ecules are linked into a chain running along the [101] direction by O—H(...)O and C—H(...)Cl hydrogen bonds. The chains are cross-linked through inter­molecular C—H(...)Cl hydrogen bonds.

Related literature

For related literature, see: Dayalan & Vijayaraghavan (2001 [triangle]); Lee et al. (2007 [triangle]); Gupta et al. (2000 [triangle], 2001 [triangle], 2004 [triangle]); Ohkubo & Fukuzumi (2005 [triangle]); Raza­velt et al. (2005 [triangle]). Trommel et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m300-scheme1.jpg

Experimental

Crystal data

  • [Co(C4H7N2O2)Cl2(C4H8N2O2)]
  • M r = 361.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m300-efi1.jpg
  • a = 8.1901 (2) Å
  • b = 8.1261 (2) Å
  • c = 10.4463 (3) Å
  • β = 102.007 (1)°
  • V = 680.03 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.67 mm−1
  • T = 293 (2) K
  • 0.20 × 0.12 × 0.12 mm

Data collection

  • Bruker–Nonius Kappa-APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.786, T max = 0.819
  • 10990 measured reflections
  • 5284 independent reflections
  • 4711 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.057
  • S = 0.99
  • 5284 reflections
  • 179 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.29 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2067 Friedel pairs
  • Flack parameter: 0.008 (7)

Data collection: APEX2 (Bruker–Nonius, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker–Nonius, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068407/ci2517sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068407/ci2517Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Dr S. Ramanathan, Principal, Presidency College (Autonomous), Chennai, India, and Rev. Fr A. Albert Muthumalai, S. J., Principal, Loyola College (Auton­omous), Chennai, India, for providing the necessary facilities. The Head, SAIF, CDRI, Lucknow, India, is thanked for supplying the elemental analysis data and the Head, SAIF, IIT Madras, Chennai, India, for recording the NMR spectra and for the X-ray data collection.

supplementary crystallographic information

Comment

Dimethylglyoximatocobalt(III) complexes, generally known as cobaloximes, have been studied extensively as model compounds for vitamine-B12 (Trommel et al., 2001; Ohkubo & Fukuzumi, 2005). Most of the work on cobaloximes include electron-transfer reactions (Dayalan & Vijayaraghavan, 2001) and catalytic activity (Razavelt et al., 2005) in solution. There are few literature evidences relating the structural aspects of cobaloximes (Gupta et al., 2000; Gupta et al., 2001; Gupta et al., 2004). We report here the synthesis and X-ray crystal structure of the title compoud.

The coordination geometry around the CoIII ion can be described as a slightly distorted octahedron. The axial positions are occupied by the chloride ions. The glyoxime moieties are individually planar. The CoIII ion and the four N atoms of dimethylglyoxime ligands are approximately coplanar. The Co—N and Co—Cl bond lengths are normal (Table 1), and are comparable with the corresponding values observed in a related complex (Lee et al., 2007).

Strong intramolecular O—H···O hydrogen bonds are observed between the dimethylglyoxime and dimethylglyoximate ligands (Table 2). The crystal packing is stabilized by O—H···O and C—H···Cl hydrogen bonds. Atoms O2 and C4 of the molecule at (x, y, z) act as donors to atoms O1 and Cl1, respectively, of the molecule at (-1/2 + x, -y, -1/2 + z). These two hydrogen bonds form a chain running along the [1 0 1] direction. The chains are cross-linked through C—H···Cl intermolecular hydrogen bonds.

Experimental

Cobalt(II) chloride hexahydrate was thoroughly grinded and exposed to microwave for 30 s. Dehydrated cobalt(II) chloride (1.3 g) was mixed with dimethyl glyoxime (2.32 g). The mixture was intimately grinded and made into a paste using acetone and exposed to microwave radiation for 60 s. The microwave treated reaction mixture was exposed to atmosphere, till it became green. The green coloured product was recrystallized from acetone. Single crystals were obtained by slow evaporation of the acetone solution.

Refinement

All H atoms were fixed geometrically (O—H = 0.82 Å and C—H = 0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C,O).

Figures

Fig. 1.
The structure of the title complex. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitary radii.

Crystal data

[Co(C4H7N2O2)Cl2(C4H8N2O2)]F000 = 368
Mr = 361.07Dx = 1.763 Mg m3
Monoclinic, PnMo Kα radiation λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 3586 reflections
a = 8.1901 (2) Åθ = 2.8–37.2º
b = 8.1261 (2) ŵ = 1.67 mm1
c = 10.4463 (3) ÅT = 293 (2) K
β = 102.007 (1)ºPlate, green
V = 680.03 (3) Å30.20 × 0.12 × 0.12 mm
Z = 2

Data collection

Bruker–Nonius Kappa APEXII CCD diffractometer5284 independent reflections
Radiation source: fine-focus sealed tube4711 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.021
T = 293(2) Kθmax = 37.2º
ω and [var phi] scansθmin = 2.9º
Absorption correction: multi-scan(SADABS; Bruker, 1999)h = −12→13
Tmin = 0.786, Tmax = 0.819k = −13→13
10990 measured reflectionsl = −17→17

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025  w = 1/[σ2(Fo2) + (0.0235P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max = 0.023
S = 0.99Δρmax = 0.56 e Å3
5284 reflectionsΔρmin = −0.29 e Å3
179 parametersExtinction correction: none
2 restraintsAbsolute structure: Flack (1983), 2067 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.008 (7)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2744 (2)−0.2411 (2)0.7384 (2)0.0354 (4)
H1A0.3762−0.30160.74360.053*
H1B0.1848−0.29740.68120.053*
H1C0.2497−0.23250.82410.053*
C20.29345 (19)−0.07336 (17)0.68614 (15)0.0255 (3)
C30.15626 (19)0.01410 (18)0.60187 (15)0.0259 (3)
C4−0.0162 (2)−0.0517 (2)0.56788 (19)0.0362 (4)
H4A−0.09120.03390.52900.054*
H4B−0.0486−0.09080.64570.054*
H4C−0.0207−0.14080.50690.054*
C50.5786 (2)0.6808 (2)0.5132 (2)0.0353 (4)
H5A0.65400.68270.45410.053*
H5B0.62130.74970.58730.053*
H5C0.47120.72080.46910.053*
C60.5617 (2)0.50905 (17)0.55842 (15)0.0264 (3)
C70.70180 (19)0.41674 (18)0.63553 (16)0.0266 (3)
C80.8762 (2)0.4804 (2)0.6649 (2)0.0411 (4)
H8A0.88660.56470.73050.062*
H8B0.90270.52530.58670.062*
H8C0.95180.39210.69660.062*
Cl10.36969 (5)0.33736 (5)0.79458 (4)0.03361 (8)
Cl20.48754 (5)0.09885 (5)0.44061 (4)0.03422 (9)
Co0.42858 (2)0.21491 (2)0.618650 (19)0.02055 (4)
N10.43373 (15)0.00641 (15)0.70278 (13)0.0232 (2)
N20.20367 (15)0.15171 (15)0.56038 (12)0.0242 (2)
N30.65689 (16)0.27610 (14)0.67399 (13)0.0249 (2)
N40.42440 (16)0.42760 (15)0.53841 (13)0.0257 (2)
O10.57344 (14)−0.05436 (13)0.77384 (12)0.0303 (2)
O20.09198 (16)0.24162 (15)0.46980 (13)0.0301 (2)
H20.06880.19040.40080.045*
O30.77626 (15)0.18097 (16)0.74654 (14)0.0362 (3)
H30.73520.09340.76280.054*
O40.28559 (16)0.50431 (15)0.46882 (14)0.0378 (3)
H40.20910.43770.45060.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0400 (9)0.0242 (7)0.0421 (10)−0.0089 (7)0.0088 (8)0.0041 (7)
C20.0304 (7)0.0209 (5)0.0252 (7)−0.0042 (5)0.0061 (6)−0.0010 (5)
C30.0278 (7)0.0254 (6)0.0247 (7)−0.0041 (5)0.0061 (5)−0.0038 (5)
C40.0295 (8)0.0382 (8)0.0401 (9)−0.0097 (7)0.0052 (6)−0.0017 (7)
C50.0420 (10)0.0239 (6)0.0423 (10)−0.0035 (7)0.0138 (8)0.0061 (7)
C60.0352 (7)0.0208 (5)0.0250 (7)−0.0012 (5)0.0108 (6)0.0010 (5)
C70.0266 (7)0.0249 (6)0.0284 (7)−0.0044 (5)0.0060 (6)−0.0009 (6)
C80.0336 (8)0.0405 (9)0.0493 (11)−0.0137 (7)0.0085 (7)0.0027 (8)
Cl10.0474 (2)0.02841 (16)0.02782 (18)0.00147 (15)0.01415 (16)−0.00198 (14)
Cl20.0435 (2)0.03213 (17)0.02942 (18)−0.00460 (16)0.01298 (16)−0.00663 (15)
Co0.02324 (7)0.01784 (6)0.02009 (7)−0.00196 (6)0.00338 (5)0.00024 (6)
N10.0265 (6)0.0198 (5)0.0229 (6)−0.0016 (4)0.0040 (4)0.0001 (4)
N20.0249 (6)0.0231 (5)0.0229 (6)−0.0003 (5)0.0011 (4)−0.0002 (5)
N30.0257 (5)0.0213 (5)0.0265 (6)−0.0010 (4)0.0028 (5)0.0003 (5)
N40.0313 (6)0.0225 (5)0.0231 (6)0.0021 (5)0.0050 (5)0.0031 (4)
O10.0290 (5)0.0268 (5)0.0320 (6)0.0008 (4)−0.0010 (4)0.0085 (4)
O20.0293 (6)0.0312 (5)0.0260 (5)0.0023 (4)−0.0027 (4)−0.0016 (4)
O30.0286 (6)0.0295 (5)0.0462 (8)0.0009 (5)−0.0020 (5)0.0101 (5)
O40.0339 (6)0.0338 (6)0.0420 (7)0.0040 (5)−0.0002 (5)0.0115 (6)

Geometric parameters (Å, °)

C1—C21.489 (2)C7—C81.490 (2)
C1—H1A0.96C8—H8A0.96
C1—H1B0.96C8—H8B0.96
C1—H1C0.96C8—H8C0.96
C2—N11.2990 (19)Cl1—Co2.2292 (4)
C2—C31.460 (2)Cl2—Co2.2261 (4)
C3—N21.2881 (18)Co—N21.8870 (12)
C3—C41.483 (2)Co—N31.9048 (13)
C4—H4A0.96Co—N11.9051 (12)
C4—H4B0.96Co—N41.9181 (12)
C4—H4C0.96N1—O11.3231 (17)
C5—C61.489 (2)N1—O11.3231 (17)
C5—H5A0.96N2—O21.3805 (17)
C5—H5B0.96N3—O31.3489 (17)
C5—H5C0.96N4—O41.3659 (17)
C6—N41.284 (2)O2—H20.82
C6—C71.464 (2)O3—H30.82
C7—N31.2901 (18)O4—H40.82
C2—C1—H1A109.5H8A—C8—H8C109.5
C2—C1—H1B109.5H8B—C8—H8C109.5
H1A—C1—H1B109.5N2—Co—N3178.64 (6)
C2—C1—H1C109.5N2—Co—N180.40 (5)
H1A—C1—H1C109.5N3—Co—N199.56 (5)
H1B—C1—H1C109.5N2—Co—N4100.18 (5)
N1—C2—C3112.72 (13)N3—Co—N479.90 (5)
N1—C2—C1124.42 (15)N1—Co—N4178.48 (6)
C3—C2—C1122.72 (13)N2—Co—Cl288.97 (4)
N2—C3—C2112.18 (13)N3—Co—Cl289.67 (4)
N2—C3—C4124.84 (15)N1—Co—Cl291.19 (4)
C2—C3—C4122.98 (13)N4—Co—Cl290.23 (4)
C3—C4—H4A109.5N2—Co—Cl191.34 (4)
C3—C4—H4B109.5N3—Co—Cl190.02 (4)
H4A—C4—H4B109.5N1—Co—Cl190.26 (4)
C3—C4—H4C109.5N4—Co—Cl188.33 (4)
H4A—C4—H4C109.5Cl2—Co—Cl1178.550 (17)
H4B—C4—H4C109.5C2—N1—O1121.76 (12)
C6—C5—H5A109.5C2—N1—O1121.76 (12)
C6—C5—H5B109.5C2—N1—Co116.61 (11)
H5A—C5—H5B109.5O1—N1—Co121.62 (9)
C6—C5—H5C109.5O1—N1—Co121.62 (9)
H5A—C5—H5C109.5C3—N2—O2119.14 (12)
H5B—C5—H5C109.5C3—N2—Co118.04 (11)
N4—C6—C7112.65 (13)O2—N2—Co122.70 (9)
N4—C6—C5124.55 (16)C7—N3—O3117.54 (13)
C7—C6—C5122.77 (14)C7—N3—Co117.53 (11)
N3—C7—C6112.57 (13)O3—N3—Co124.89 (9)
N3—C7—C8124.50 (15)C6—N4—O4117.09 (12)
C6—C7—C8122.93 (14)C6—N4—Co117.25 (11)
C7—C8—H8A109.5O4—N4—Co125.52 (9)
C7—C8—H8B109.5N2—O2—H2109.5
H8A—C8—H8B109.5N3—O3—H3109.5
C7—C8—H8C109.5N4—O4—H4109.5
N1—C2—C3—N20.71 (19)N4—Co—N2—C3−176.40 (11)
C1—C2—C3—N2−175.17 (14)Cl2—Co—N2—C393.56 (11)
N1—C2—C3—C4179.90 (14)Cl1—Co—N2—C3−87.86 (11)
C1—C2—C3—C44.0 (2)N1—Co—N2—O2−173.82 (12)
N4—C6—C7—N3−3.70 (19)N4—Co—N2—O27.61 (12)
C5—C6—C7—N3174.29 (15)Cl2—Co—N2—O2−82.44 (11)
N4—C6—C7—C8176.17 (15)Cl1—Co—N2—O296.15 (11)
C5—C6—C7—C8−5.8 (2)C6—C7—N3—O3−179.68 (13)
C3—C2—N1—O1−178.56 (13)C8—C7—N3—O30.5 (2)
C1—C2—N1—O1−2.8 (2)C6—C7—N3—Co2.60 (17)
C3—C2—N1—O1−178.56 (13)C8—C7—N3—Co−177.27 (13)
C1—C2—N1—O1−2.8 (2)N1—Co—N3—C7−179.35 (11)
C3—C2—N1—Co1.02 (16)N4—Co—N3—C7−0.79 (11)
C1—C2—N1—Co176.83 (13)Cl2—Co—N3—C789.50 (11)
N2—Co—N1—C2−1.70 (11)Cl1—Co—N3—C7−89.08 (11)
N3—Co—N1—C2179.68 (11)N1—Co—N3—O33.11 (13)
Cl2—Co—N1—C2−90.45 (11)N4—Co—N3—O3−178.33 (13)
Cl1—Co—N1—C289.61 (10)Cl2—Co—N3—O3−88.04 (12)
N2—Co—N1—O1177.89 (12)Cl1—Co—N3—O393.37 (12)
N3—Co—N1—O1−0.74 (12)C7—C6—N4—O4179.09 (13)
Cl2—Co—N1—O189.14 (11)C5—C6—N4—O41.1 (2)
Cl1—Co—N1—O1−90.80 (11)C7—C6—N4—Co3.19 (17)
N2—Co—N1—O1177.89 (12)C5—C6—N4—Co−174.76 (13)
N3—Co—N1—O1−0.74 (12)N2—Co—N4—C6179.87 (11)
Cl2—Co—N1—O189.14 (11)N3—Co—N4—C6−1.51 (11)
Cl1—Co—N1—O1−90.80 (11)Cl2—Co—N4—C6−91.14 (11)
C2—C3—N2—O2173.96 (13)Cl1—Co—N4—C688.81 (11)
C4—C3—N2—O2−5.2 (2)N2—Co—N4—O44.35 (13)
C2—C3—N2—Co−2.17 (17)N3—Co—N4—O4−177.02 (13)
C4—C3—N2—Co178.66 (12)Cl2—Co—N4—O493.35 (12)
N1—Co—N2—C32.17 (11)Cl1—Co—N4—O4−86.70 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O10.821.812.5875 (16)158
O4—H4···O20.821.892.6604 (18)156
O2—H2···O1i0.821.732.5297 (17)163
C4—H4C···Cl1i0.962.733.6473 (19)160
C5—H5A···Cl1ii0.962.673.6317 (18)175

Symmetry codes: (i) x−1/2, −y, z−1/2; (ii) x+1/2, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2517).

References

  • Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker–Nonius (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dayalan, A. & Vijayaraghavan, V. R. (2001). Indian J. Chem. Sect. A40, 959–964.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gupta, B. D., Singh, V., Quanango, K., Vijay Kanth, V., Yamuna, R., Barclay, T. & Cordes, W. (2000). J. Organomet. Chem.602, 1–4.
  • Gupta, B. D., Tiwari, U., Barley, T. & Cordes, W. (2001). J. Organomet. Chem.629, 83–92.
  • Gupta, B. D., Vijaykanth, V. & Singh, V. (2004). Organometallics, 23, 2067–2079.
  • Lee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949–m1950.
  • Ohkubo, K. & Fukuzumi, S. (2005). J. Phys. Chem.109, 1105–1113. [PubMed]
  • Razavelt, M., Artero, V. & Fentcave, M. (2005). Inorg. Chem.44, 4786–4795. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Trommel, J. S., Warncke, K. & Marzilli, L. G. (2001). J. Am. Chem. Soc.123, 3358–3366. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography