PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m401–m402.
Published online 2008 January 23. doi:  10.1107/S160053680800216X
PMCID: PMC2960256

Bis(μ-3-hydroxy­benzoato)-κ2 O 1:O 32 O 3:O 1-bis­[bis­(1H-benzimidazole-κN 3)(3-hydroxy­benzoato-κO)nickel(II)] bis­(1H-benzimidazole-κN 3)bis­(3-hy­droxy­benzoato-κO 1)nickel(II) hexa­hydrate

Abstract

The title compound, [Ni2(C7H5O3)4(C7H6N2)4][Ni(C7H5O3)2(C7H6N2)2]·6H2O, is a mononuclear/dinuclear nickel(II) cocrystal, the two mol­ecular species inter­acting through hydrogen bonds that involve the uncoordinated water mol­ecules. In the mononuclear species, the NiII ion, located on an inversion center, is coordinated by two 1H-benzimidazole (bzim) ligands and two 3-hydroxy­benzoate (hba) anions in a square-planar geometry. In the centrosymmetric dinuclear species, the NiII ion is coordinated by two bzim ligands and three hba anions in a square-pyramidal geometry; of the two independent hba anions, one bridges two NiII ions with both carboxylate and hydroxyl groups whereas the other coordin­ates in a unidentate manner to the NiII ion. The apical Ni—Ohydrox­yl bond is 0.39 Å longer than the basal Ni—Ocarbox­yl bonds. The face-to-face separation of 3.326 (9) Å indicates the existence of π–π stacking between parallel bzim ligands of adjacent dinuclear entities. Extensive N—H(...)O and O—H(...)O hydrogen bonds help to stabilize the crystal structure.

Related literature

For general background, see: Deisenhofer & Michel (1989 [triangle]); Wu et al. (2003 [triangle]); Luo et al. (2004 [triangle]). For a related structure, see: Li et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m401-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C7H5O3)4(C7H6N2)4][Ni(C7H5O3)2(C7H6N2)2]·6H2O
  • M r = 1815.65
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m401-efi1.jpg
  • a = 9.9926 (12) Å
  • b = 12.9504 (15) Å
  • c = 17.069 (2) Å
  • α = 100.05 (2)°
  • β = 104.88 (3)°
  • γ = 101.75 (2)°
  • V = 2029.1 (6) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.78 mm−1
  • T = 291 (2) K
  • 0.36 × 0.30 × 0.22 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.728, T max = 0.840
  • 17583 measured reflections
  • 7894 independent reflections
  • 5818 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.151
  • S = 1.10
  • 7894 reflections
  • 556 parameters
  • H-atom parameters constrained
  • Δρmax = 0.77 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680800216X/ng2421sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800216X/ng2421Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

The π-π stacking is an important non-covalent interaction correlated with electron transfer in some biological systems (Deisenhofer & Michel, 1989). As part of our ongoing investigation on the nature of π-π stacking in metal complexes (Wu et al., 2003; Luo et al., 2004), we have recently prepared the title NiII complex with benzimidazole (bzim) ligands and determined its crystal structure.

The crystal of the title compound consists of monomeric NiII complexes, dimeric NiII complexes and lattice water molecules (Fig. 1). In the monomeric complex, the NiII ion is located on an inversion center and coordinated by two bzim ligands and two 3-hydroxybenzoate (hba) anions with a square-planar geometry (Table 1).

In the dimeric complex, each NiII ion assumes a square-pyramidal geometry formed by two bzim ligands and three hba anions, among which a pair of hba anion bridges the neighboring two NiII ions to form the centro-symmetric dimeric complex. The Ni2 ion is 0.0721 (14) Å deviated from the O4/O7/N23/N33 coordination plane towards to the O9ii atom [symmetry code: (ii) 1 - x,-y,1 - z]. The Ni2—O9 bond in the axial direction is longer than Ni2—O4 and Ni2—O7 bonds by about 0.39 Å (Table 1), similar to that found in a complex with 2-hydroxybenzoate ligands (Li et al., 2005).

The partially overlapped arrangement is observed between parallel bzim ligands of adjacent dimeric complexes (Fig. 2). The face-to-face separation of 3.326 (9) Å between N23-bzim and N23iii-bzim planes [symmetry code: (iii) 1 - x,1 - y,1 - z] indicates the existence of π-π stacking between them. The extensive N—H···O and O—H···O hydrogen bonding network helps to stabilize the crystal structure.

Experimental

An ethanol solution (5 ml) of bzim (0.24 g, 2 mmol) was mixed with an aqueous solution (10 ml) containing sodium 3-hydroxybenzoate (0.32 g, 2 mmol) and Ni(NO3)2.6H2O (0.29 g, 1 mmol). The mixture was refluxed for 6 h and filtered after cooling to room temperature. The single crystals of the title compound were obtained from the filtrate after 6 d.

Refinement

H atoms bonded to O atoms were located in a difference Fourier map and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title compound with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate the hydrogen bonding [symmetry codes: (i) 2 - x,1 - y,-z; (ii) 1 - x,-y,1 - z].
Fig. 2.
A diagram showing π-π stacking between bzim ligands [symmetry code: (iii) 1 - x,1 - y,1 - z].

Crystal data

[Ni2(C7H5O3)4(C7H6N2)4][Ni(C7H5O3)2(C7H6N2)2]·6H2OZ = 1
Mr = 1815.65F000 = 942
Triclinic, P1Dx = 1.486 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.9926 (12) ÅCell parameters from 8706 reflections
b = 12.9504 (15) Åθ = 3.2–25.5º
c = 17.069 (2) ŵ = 0.78 mm1
α = 100.05 (2)ºT = 291 (2) K
β = 104.88 (3)ºPrism, green
γ = 101.75 (2)º0.36 × 0.30 × 0.22 mm
V = 2029.1 (6) Å3

Data collection

Rigaku R-AXIS RAPID IP diffractometer7894 independent reflections
Radiation source: fine-focus sealed tube5818 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.043
Detector resolution: 10.00 pixels mm-1θmax = 26.0º
T = 291(2) Kθmin = 3.1º
ω scansh = −12→10
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)k = −15→15
Tmin = 0.728, Tmax = 0.840l = −20→20
17583 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.151  w = 1/[σ2(Fo2) + (0.0807P)2 + 0.2523P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
7894 reflectionsΔρmax = 0.77 e Å3
556 parametersΔρmin = −0.49 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni11.00000.50000.00000.03773 (18)
Ni20.56466 (4)0.17869 (3)0.34773 (2)0.03137 (14)
N110.5837 (4)0.3399 (3)−0.1408 (2)0.0653 (10)
H110.50460.3413−0.17500.078*
N130.8089 (3)0.3954 (3)−0.05883 (17)0.0467 (8)
N210.3270 (4)0.3388 (3)0.4636 (2)0.0572 (9)
H210.27380.33970.49600.069*
N230.4653 (3)0.2811 (2)0.39320 (17)0.0412 (7)
N310.8151 (4)0.0406 (3)0.2271 (2)0.0600 (9)
H310.85580.03700.18830.072*
N330.6783 (3)0.0884 (2)0.30243 (18)0.0417 (7)
O11.0141 (3)0.4464 (2)0.09861 (15)0.0502 (7)
O20.8657 (3)0.5328 (2)0.14279 (15)0.0513 (7)
O30.8177 (3)0.3899 (2)0.39189 (16)0.0544 (7)
H3O0.82980.35900.43280.082*
O40.5044 (3)0.2087 (2)0.23718 (13)0.0414 (6)
O50.2715 (3)0.1264 (2)0.18550 (16)0.0552 (7)
O60.1196 (3)0.3096 (3)−0.0511 (2)0.0861 (12)
H6O0.12980.3644−0.08410.129*
O70.6324 (3)0.1567 (2)0.46053 (14)0.0464 (6)
O80.8407 (3)0.2847 (2)0.50983 (16)0.0505 (7)
O90.6492 (3)−0.0408 (2)0.68827 (16)0.0584 (8)
H9O0.6882−0.06090.73820.088*
O1W0.1500 (3)0.3747 (2)0.5685 (2)0.0683 (8)
H1A0.13550.44440.56410.102*
H1B0.05640.35500.56630.102*
O2W0.9835 (4)0.0153 (4)0.1156 (2)0.0996 (12)
H2A1.08170.04340.13170.149*
H2B0.9734−0.04460.08000.149*
O3W0.3024 (4)0.3628 (4)−0.2241 (3)0.1175 (15)
H3A0.24050.3351−0.27130.176*
H3B0.26190.3958−0.19320.176*
C120.7043 (4)0.4195 (4)−0.1113 (2)0.0549 (10)
H120.71400.4857−0.12630.066*
C140.8112 (5)0.2222 (3)−0.0099 (3)0.0597 (11)
H140.90560.24390.02460.072*
C150.7215 (7)0.1191 (4)−0.0204 (3)0.0834 (16)
H150.75720.07090.00830.100*
C160.5819 (6)0.0870 (5)−0.0721 (4)0.0939 (19)
H160.52670.0175−0.07760.113*
C170.5222 (6)0.1540 (5)−0.1155 (3)0.0863 (17)
H170.42750.1323−0.14950.104*
C180.6092 (4)0.2549 (4)−0.1061 (3)0.0593 (11)
C190.7499 (4)0.2898 (3)−0.0543 (2)0.0510 (10)
C220.3921 (4)0.2620 (3)0.4456 (2)0.0506 (9)
H220.38650.20100.46770.061*
C240.5023 (4)0.4399 (3)0.3268 (2)0.0511 (9)
H240.56060.41640.29680.061*
C250.4651 (6)0.5373 (4)0.3246 (3)0.0720 (13)
H250.50030.58070.29250.086*
C260.3773 (6)0.5716 (4)0.3687 (4)0.0809 (15)
H260.35480.63710.36470.097*
C270.3222 (5)0.5128 (4)0.4182 (3)0.0701 (13)
H270.26320.53630.44770.084*
C280.3603 (4)0.4164 (3)0.4210 (2)0.0493 (9)
C290.4475 (4)0.3799 (3)0.3763 (2)0.0407 (8)
C320.7295 (4)0.1028 (3)0.2400 (2)0.0457 (8)
H320.70750.15200.20830.055*
C340.7195 (7)−0.0391 (5)0.3972 (4)0.103 (2)
H340.6549−0.02450.42560.124*
C350.8018 (8)−0.1100 (6)0.4176 (6)0.142 (3)
H350.7935−0.14270.46110.171*
C360.8963 (8)−0.1337 (6)0.3744 (6)0.146 (4)
H360.9526−0.17980.39080.175*
C370.9083 (7)−0.0899 (5)0.3076 (5)0.116 (3)
H370.9683−0.10790.27690.140*
C380.8265 (5)−0.0178 (4)0.2884 (4)0.0749 (15)
C390.7371 (5)0.0096 (4)0.3329 (3)0.0616 (12)
C410.9422 (4)0.4681 (3)0.1481 (2)0.0423 (8)
C420.9567 (4)0.4094 (3)0.21743 (19)0.0380 (8)
C430.8825 (4)0.4256 (3)0.2744 (2)0.0395 (8)
H430.82380.47290.27030.047*
C440.8957 (4)0.3709 (3)0.3382 (2)0.0391 (8)
C450.9817 (4)0.3006 (3)0.3451 (2)0.0399 (8)
H450.99010.26420.38790.048*
C461.0561 (4)0.2843 (3)0.2872 (2)0.0464 (9)
H461.11410.23650.29130.056*
C471.0445 (4)0.3386 (3)0.2237 (2)0.0436 (8)
H471.09510.32790.18550.052*
C510.3826 (4)0.1894 (3)0.1838 (2)0.0374 (8)
C520.3786 (3)0.2490 (3)0.11543 (19)0.0357 (7)
C530.2499 (4)0.2489 (3)0.0608 (2)0.0479 (9)
H530.16400.20930.06450.058*
C540.2486 (4)0.3080 (3)0.0001 (2)0.0494 (10)
C550.3752 (4)0.3648 (3)−0.0060 (2)0.0529 (10)
H550.37460.4029−0.04750.064*
C560.5029 (4)0.3659 (3)0.0484 (2)0.0522 (10)
H560.58860.40560.04430.063*
C570.5053 (4)0.3083 (3)0.1096 (2)0.0455 (9)
H570.59230.30960.14670.055*
C610.7452 (4)0.2114 (3)0.5177 (2)0.0374 (8)
C620.7627 (3)0.1868 (3)0.6019 (2)0.0342 (7)
C630.6919 (4)0.0856 (3)0.6079 (2)0.0391 (8)
H630.63240.03390.56010.047*
C640.7111 (4)0.0623 (3)0.6861 (2)0.0399 (8)
C650.7907 (4)0.1410 (3)0.7573 (2)0.0434 (8)
H650.79840.12630.80950.052*
C660.8591 (4)0.2421 (3)0.7513 (2)0.0468 (9)
H660.91210.29550.79950.056*
C670.8492 (4)0.2641 (3)0.6740 (2)0.0405 (8)
H670.90030.33060.67020.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0354 (3)0.0542 (4)0.0231 (3)0.0028 (3)0.0126 (2)0.0128 (3)
Ni20.0360 (2)0.0384 (2)0.0247 (2)0.01420 (18)0.00910 (17)0.01509 (18)
N110.048 (2)0.087 (3)0.0465 (19)−0.0023 (19)0.0037 (16)0.0199 (19)
N130.0425 (17)0.062 (2)0.0317 (15)0.0035 (15)0.0123 (13)0.0121 (15)
N210.048 (2)0.074 (2)0.0505 (19)0.0172 (18)0.0222 (16)0.0049 (18)
N230.0461 (17)0.0462 (17)0.0391 (15)0.0189 (14)0.0174 (13)0.0158 (14)
N310.055 (2)0.060 (2)0.078 (2)0.0166 (17)0.0405 (19)0.018 (2)
N330.0388 (16)0.0455 (17)0.0457 (16)0.0165 (13)0.0135 (14)0.0159 (14)
O10.0484 (15)0.0724 (18)0.0347 (12)0.0080 (13)0.0205 (12)0.0223 (13)
O20.0550 (16)0.0641 (17)0.0412 (13)0.0153 (14)0.0145 (12)0.0296 (13)
O30.0700 (18)0.0728 (19)0.0500 (15)0.0362 (15)0.0388 (14)0.0387 (15)
O40.0441 (14)0.0541 (15)0.0317 (11)0.0168 (11)0.0113 (11)0.0206 (11)
O50.0471 (15)0.0693 (18)0.0507 (15)0.0053 (13)0.0101 (12)0.0373 (14)
O60.0464 (17)0.154 (3)0.075 (2)0.0245 (19)0.0118 (16)0.082 (2)
O70.0498 (15)0.0560 (16)0.0345 (12)0.0127 (12)0.0074 (12)0.0226 (12)
O80.0555 (16)0.0570 (16)0.0480 (14)0.0102 (13)0.0212 (13)0.0320 (13)
O90.0612 (17)0.0551 (17)0.0469 (15)−0.0095 (13)0.0011 (13)0.0334 (14)
O1W0.0643 (19)0.0645 (19)0.086 (2)0.0204 (15)0.0396 (17)0.0140 (17)
O2W0.057 (2)0.135 (4)0.092 (3)0.016 (2)0.023 (2)0.000 (2)
O3W0.086 (3)0.174 (5)0.090 (3)0.054 (3)0.011 (2)0.027 (3)
C120.048 (2)0.073 (3)0.0360 (19)0.003 (2)0.0079 (17)0.017 (2)
C140.069 (3)0.057 (3)0.056 (2)0.013 (2)0.027 (2)0.015 (2)
C150.114 (5)0.068 (3)0.078 (3)0.021 (3)0.042 (3)0.029 (3)
C160.086 (4)0.075 (4)0.088 (4)−0.027 (3)0.015 (3)0.009 (3)
C170.077 (4)0.087 (4)0.069 (3)−0.019 (3)0.014 (3)0.011 (3)
C180.049 (2)0.069 (3)0.048 (2)−0.005 (2)0.0139 (19)0.006 (2)
C190.056 (2)0.055 (2)0.042 (2)0.0028 (19)0.0238 (18)0.0131 (19)
C220.053 (2)0.062 (3)0.042 (2)0.016 (2)0.0216 (18)0.0132 (19)
C240.054 (2)0.050 (2)0.050 (2)0.0159 (18)0.0106 (19)0.0198 (19)
C250.079 (3)0.057 (3)0.079 (3)0.024 (2)0.006 (3)0.031 (3)
C260.075 (3)0.056 (3)0.101 (4)0.037 (3)0.003 (3)0.004 (3)
C270.056 (3)0.062 (3)0.083 (3)0.026 (2)0.012 (2)−0.006 (3)
C280.036 (2)0.053 (2)0.047 (2)0.0132 (17)0.0039 (17)−0.0057 (18)
C290.0387 (19)0.0411 (19)0.0385 (18)0.0133 (15)0.0055 (15)0.0053 (16)
C320.043 (2)0.047 (2)0.045 (2)0.0112 (17)0.0123 (17)0.0086 (17)
C340.127 (5)0.109 (5)0.155 (6)0.087 (4)0.099 (5)0.093 (5)
C350.162 (7)0.153 (7)0.230 (9)0.121 (6)0.134 (7)0.145 (7)
C360.140 (6)0.141 (6)0.267 (10)0.106 (5)0.136 (7)0.139 (7)
C370.115 (5)0.110 (5)0.206 (8)0.079 (4)0.116 (5)0.090 (5)
C380.063 (3)0.067 (3)0.125 (4)0.034 (2)0.054 (3)0.044 (3)
C390.058 (3)0.062 (3)0.094 (3)0.034 (2)0.044 (3)0.041 (3)
C410.0377 (19)0.052 (2)0.0285 (16)−0.0037 (16)0.0040 (15)0.0133 (16)
C420.0417 (19)0.0433 (19)0.0261 (15)0.0002 (15)0.0109 (14)0.0125 (15)
C430.045 (2)0.046 (2)0.0326 (17)0.0125 (16)0.0151 (15)0.0185 (16)
C440.0402 (19)0.047 (2)0.0324 (17)0.0070 (16)0.0135 (15)0.0163 (16)
C450.044 (2)0.0407 (19)0.0369 (17)0.0079 (15)0.0117 (15)0.0177 (16)
C460.046 (2)0.048 (2)0.047 (2)0.0162 (17)0.0143 (17)0.0150 (18)
C470.043 (2)0.055 (2)0.0328 (17)0.0098 (17)0.0157 (16)0.0096 (17)
C510.042 (2)0.044 (2)0.0322 (16)0.0172 (16)0.0134 (15)0.0152 (15)
C520.0392 (18)0.0443 (19)0.0274 (15)0.0121 (15)0.0122 (14)0.0140 (15)
C530.043 (2)0.069 (3)0.0393 (19)0.0121 (18)0.0160 (16)0.0290 (19)
C540.042 (2)0.075 (3)0.0387 (19)0.0176 (19)0.0114 (16)0.032 (2)
C550.058 (2)0.070 (3)0.046 (2)0.020 (2)0.0233 (19)0.038 (2)
C560.046 (2)0.064 (3)0.048 (2)0.0034 (18)0.0153 (18)0.030 (2)
C570.041 (2)0.059 (2)0.0414 (19)0.0148 (17)0.0109 (16)0.0235 (18)
C610.0410 (19)0.046 (2)0.0369 (18)0.0182 (16)0.0167 (16)0.0230 (16)
C620.0337 (17)0.0386 (18)0.0365 (17)0.0126 (14)0.0123 (14)0.0191 (15)
C630.0396 (19)0.0419 (19)0.0280 (16)0.0005 (15)0.0010 (14)0.0141 (15)
C640.0353 (18)0.048 (2)0.0390 (18)0.0066 (15)0.0094 (15)0.0242 (17)
C650.053 (2)0.052 (2)0.0296 (16)0.0156 (18)0.0120 (16)0.0180 (17)
C660.057 (2)0.045 (2)0.0319 (17)0.0113 (18)0.0063 (17)0.0070 (16)
C670.042 (2)0.0381 (19)0.0420 (19)0.0092 (15)0.0109 (16)0.0163 (16)

Geometric parameters (Å, °)

Ni1—O1i1.914 (2)C24—C291.382 (5)
Ni1—O11.914 (2)C24—C251.390 (6)
Ni1—N13i1.994 (3)C24—H240.9300
Ni1—N131.994 (3)C25—C261.384 (7)
Ni2—O41.960 (2)C25—H250.9300
Ni2—O71.961 (2)C26—C271.374 (7)
Ni2—N231.980 (3)C26—H260.9300
Ni2—N331.983 (3)C27—C281.382 (6)
Ni2—O9ii2.349 (3)C27—H270.9300
N11—C121.330 (5)C28—C291.396 (5)
N11—C181.375 (6)C32—H320.9300
N11—H110.8600C34—C351.383 (7)
N13—C121.320 (5)C34—C391.388 (6)
N13—C191.398 (5)C34—H340.9300
N21—C221.329 (5)C35—C361.388 (9)
N21—C281.376 (5)C35—H350.9300
N21—H210.8600C36—C371.379 (8)
N23—C221.318 (4)C36—H360.9300
N23—C291.395 (4)C37—C381.388 (7)
N31—C321.321 (5)C37—H370.9300
N31—C381.390 (6)C38—C391.373 (6)
N31—H310.8600C41—C421.507 (4)
N33—C321.320 (4)C42—C431.379 (5)
N33—C391.389 (5)C42—C471.391 (5)
O1—C411.273 (4)C43—C441.392 (4)
O2—C411.244 (4)C43—H430.9300
O3—C441.369 (4)C44—C451.373 (5)
O3—H3O0.8583C45—C461.394 (5)
O4—C511.265 (4)C45—H450.9300
O5—C511.247 (4)C46—C471.385 (5)
O6—C541.365 (4)C46—H460.9300
O6—H6O0.9838C47—H470.9300
O7—C611.262 (4)C51—C521.504 (4)
O8—C611.254 (4)C52—C571.378 (5)
O9—C641.364 (4)C52—C531.381 (5)
O9—H9O0.9450C53—C541.390 (4)
O1W—H1A0.9556C53—H530.9300
O1W—H1B0.9067C54—C551.367 (5)
O2W—H2A0.9226C55—C561.368 (5)
O2W—H2B0.8684C55—H550.9300
O3W—H3A0.8443C56—C571.382 (4)
O3W—H3B0.8519C56—H560.9300
C12—H120.9300C57—H570.9300
C14—C191.388 (6)C61—C621.501 (4)
C14—C151.402 (6)C62—C631.391 (4)
C14—H140.9300C62—C671.391 (5)
C15—C161.378 (8)C63—C641.394 (4)
C15—H150.9300C63—H630.9300
C16—C171.365 (8)C64—C651.374 (5)
C16—H160.9300C65—C661.382 (5)
C17—C181.373 (6)C65—H650.9300
C17—H170.9300C66—C671.380 (5)
C18—C191.388 (6)C66—H660.9300
C22—H220.9300C67—H670.9300
O1i—Ni1—O1180.0N23—C29—C28108.3 (3)
O1i—Ni1—N13i91.67 (11)N33—C32—N31113.5 (3)
O1—Ni1—N13i88.33 (11)N33—C32—H32123.3
O1i—Ni1—N1388.33 (11)N31—C32—H32123.3
O1—Ni1—N1391.67 (11)C35—C34—C39117.5 (5)
N13i—Ni1—N13180.0C35—C34—H34121.2
O4—Ni2—O7176.81 (10)C39—C34—H34121.2
O4—Ni2—N2391.29 (11)C34—C35—C36121.4 (6)
O7—Ni2—N2387.74 (11)C34—C35—H35119.3
O4—Ni2—N3387.26 (11)C36—C35—H35119.3
O7—Ni2—N3393.42 (11)C37—C36—C35121.1 (5)
N23—Ni2—N33174.55 (12)C37—C36—H36119.4
O4—Ni2—O9ii89.67 (9)C35—C36—H36119.4
O7—Ni2—O9ii93.33 (10)C36—C37—C38116.8 (5)
N23—Ni2—O9ii88.21 (12)C36—C37—H37121.6
N33—Ni2—O9ii97.04 (12)C38—C37—H37121.6
C12—N11—C18107.1 (3)C39—C38—C37122.4 (5)
C12—N11—H11126.4C39—C38—N31106.2 (4)
C18—N11—H11126.4C37—C38—N31131.3 (5)
C12—N13—C19104.6 (3)C38—C39—C34120.5 (4)
C12—N13—Ni1123.2 (3)C38—C39—N33108.7 (4)
C19—N13—Ni1132.1 (3)C34—C39—N33130.8 (4)
C22—N21—C28107.6 (3)O2—C41—O1124.9 (3)
C22—N21—H21126.2O2—C41—C42120.4 (3)
C28—N21—H21126.2O1—C41—C42114.7 (3)
C22—N23—C29105.4 (3)C43—C42—C47120.1 (3)
C22—N23—Ni2123.5 (3)C43—C42—C41120.0 (3)
C29—N23—Ni2131.0 (2)C47—C42—C41119.9 (3)
C32—N31—C38106.5 (3)C42—C43—C44119.8 (3)
C32—N31—H31126.8C42—C43—H43120.1
C38—N31—H31126.8C44—C43—H43120.1
C32—N33—C39105.0 (3)O3—C44—C45122.6 (3)
C32—N33—Ni2124.6 (2)O3—C44—C43116.6 (3)
C39—N33—Ni2129.9 (3)C45—C44—C43120.8 (3)
C41—O1—Ni1122.7 (2)C44—C45—C46119.1 (3)
C44—O3—H3O116.4C44—C45—H45120.4
C51—O4—Ni2132.3 (2)C46—C45—H45120.4
C54—O6—H6O112.3C47—C46—C45120.7 (3)
C61—O7—Ni2127.1 (2)C47—C46—H46119.6
C64—O9—Ni2ii146.4 (2)C45—C46—H46119.6
C64—O9—H9O114.9C46—C47—C42119.4 (3)
Ni2ii—O9—H9O92.5C46—C47—H47120.3
H1A—O1W—H1B86.3C42—C47—H47120.3
H2A—O2W—H2B100.9O5—C51—O4124.4 (3)
H3A—O3W—H3B107.0O5—C51—C52120.6 (3)
N13—C12—N11113.5 (4)O4—C51—C52115.1 (3)
N13—C12—H12123.3C57—C52—C53119.5 (3)
N11—C12—H12123.3C57—C52—C51119.3 (3)
C19—C14—C15115.6 (5)C53—C52—C51121.1 (3)
C19—C14—H14122.2C52—C53—C54120.1 (3)
C15—C14—H14122.2C52—C53—H53120.0
C16—C15—C14121.9 (5)C54—C53—H53120.0
C16—C15—H15119.0O6—C54—C55121.5 (3)
C14—C15—H15119.0O6—C54—C53118.8 (3)
C17—C16—C15122.1 (5)C55—C54—C53119.7 (3)
C17—C16—H16118.9C54—C55—C56120.4 (3)
C15—C16—H16118.9C54—C55—H55119.8
C16—C17—C18116.5 (5)C56—C55—H55119.8
C16—C17—H17121.8C55—C56—C57120.3 (3)
C18—C17—H17121.8C55—C56—H56119.9
C17—C18—N11131.2 (4)C57—C56—H56119.9
C17—C18—C19122.8 (5)C52—C57—C56119.9 (3)
N11—C18—C19106.1 (3)C52—C57—H57120.0
C18—C19—C14121.0 (4)C56—C57—H57120.0
C18—C19—N13108.7 (4)O8—C61—O7125.4 (3)
C14—C19—N13130.3 (4)O8—C61—C62118.3 (3)
N23—C22—N21113.0 (3)O7—C61—C62116.3 (3)
N23—C22—H22123.5C63—C62—C67119.7 (3)
N21—C22—H22123.5C63—C62—C61119.6 (3)
C29—C24—C25116.0 (4)C67—C62—C61120.7 (3)
C29—C24—H24122.0C62—C63—C64119.4 (3)
C25—C24—H24122.0C62—C63—H63120.3
C26—C25—C24121.9 (5)C64—C63—H63120.3
C26—C25—H25119.0O9—C64—C65122.3 (3)
C24—C25—H25119.0O9—C64—C63117.3 (3)
C27—C26—C25122.7 (4)C65—C64—C63120.4 (3)
C27—C26—H26118.7C64—C65—C66119.9 (3)
C25—C26—H26118.7C64—C65—H65120.0
C26—C27—C28115.4 (4)C66—C65—H65120.0
C26—C27—H27122.3C67—C66—C65120.3 (3)
C28—C27—H27122.3C67—C66—H66119.8
N21—C28—C27131.4 (4)C65—C66—H66119.8
N21—C28—C29105.8 (3)C66—C67—C62120.0 (3)
C27—C28—C29122.8 (4)C66—C67—H67120.0
C24—C29—N23130.5 (3)C62—C67—H67120.0
C24—C29—C28121.2 (3)

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N11—H11···O3W0.862.072.906 (6)163
N21—H21···O1W0.862.022.867 (5)168
N31—H31···O2W0.862.022.866 (5)167
O3—H3O···O80.861.752.609 (4)174
O6—H6O···O2iii0.991.802.783 (5)175
O9—H9O···O5ii0.951.682.610 (4)166
O1W—H1A···O3iv0.962.062.936 (4)152
O1W—H1B···O8v0.912.062.907 (4)156
O2W—H2A···O5vi0.921.882.780 (5)165
O3W—H3B···O2iii0.852.002.836 (5)168

Symmetry codes: (iii) −x+1, −y+1, −z; (ii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) x−1, y, z; (vi) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2421).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Deisenhofer, J. & Michel, H. (1989). EMBO J.8, 2149–2170. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21. [PubMed]
  • Luo, Y., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2004). J. Coord. Chem.57, 1125–1130.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, Z.-Y., Xu, D.-J., Luo, Y., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, m307–m309. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography