PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o406.
Published online 2008 January 9. doi:  10.1107/S1600536807068754
PMCID: PMC2960252

2,6-Di-tert-butyl-4-(morpholinometh­yl)­phenol monohydrate

Abstract

In the title compound, C19H31NO2·H2O, the morpholine ring adopts a chair conformation, while the phenolic hydroxyl group is sterically hindered by the adjacent tert-butyl groups. The crystal structure is stabilized by a number of O—H(...)O, O—H(...)N and C—H(...)O hydrogen-bonding inter­actions, involving both the organic and the solvent mol­ecules.

Related literature

For related literature, see: Shu et al. (2005 [triangle]); Zeng & Chen (2006 [triangle]); Zeng et al. (2006 [triangle]); Yamazaki & Seguchi (1997 [triangle]); Steiner (1996 [triangle]); Rieker (1968 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o406-scheme1.jpg

Experimental

Crystal data

  • C19H31NO2·H2O
  • M r = 323.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o406-efi1.jpg
  • a = 10.1461 (14) Å
  • b = 9.7118 (12) Å
  • c = 19.966 (2) Å
  • β = 95.166 (8)°
  • V = 1959.4 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 294 (2) K
  • 0.32 × 0.30 × 0.26 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.97, T max = 0.98
  • 9174 measured reflections
  • 3412 independent reflections
  • 2098 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.151
  • S = 1.03
  • 3412 reflections
  • 224 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068754/bg2147sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068754/bg2147Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the Start Foundation for Doctors (HY07116) of Yantai University.

supplementary crystallographic information

Comment

Hindered phenol antioxidants are widely used in polymers and lubricants. They can protect polymers by increasing both their process and long-term stability against oxidative degradation (Yamazaki & Seguchi, 1997). In our research, derivates of 2,6-di-tert-butyl-4-(alkylamino)methylphenol have been studied (Shu et al., 2005; Zeng et al., 2006; Zeng & Chen, 2006). In a former paper, we have reported the transformation of 2,6-di-tert-butyl-4-(alkylamino)methyl-phenols to N,N-bis(3,5-di-tert-butyl- 4-hydroxylbenzyl)-N-alkylamines (Zeng et al., 2006), and proposed a mechanism by which 2,6-di-tert-butyl-4-(alkylamino)methyl-phenols could trnsform to 2,6-di-tert-butyl-4-methylenecyclohexa-2,5-dienone and then react with another molecule of 2,6-di-tert-butyl-4-(alkylamino)methyl-phenols to yield the N,N-bis(3,5-di-tert-butyl-4-hydroxylbenzyl)-N-alkylamines. To confirm this mechanism, a number of experiments have been carried out, viz., the reaction of 2,6-di-tert-butyl-4-(alkylamino)methyl-phenol with different amines, and the products were analysed carefully. For example, when 2,6-di-tert-butyl-4-(butylamino)methyl-phenol reacts with morpholine the title compound (I) was obtained, but the same result was obtained when different 2,6-di-tert-butyl-4-(alkylamino)methyl-phenols such as 2,6-di-tert-butyl-4-(propylamino)methylphenol or 2,6-di-tert-butyl-4-(iso-propylamino)methylphenol were used instead. This behaviour proves the mechanism proposed.

In the title compound, C19H33NO3, the morpholine ring adopts a chair conformation, while the phenolic hydroxyl is hindered by the adjacent tert-butyl groups. The crystal structure is stabilized by a number of O—H···O, O—H···N and C—H···O hydrogen-bonding interactions, where both the organic and the solvato molecules take part (Table 1).

Experimental

The 2,6-di-tert-butyl-4-(butylamino)methylphenol was prepared by the indirect reductive amination of 3,5-di-tert-butyl-4-hydroxybenzaldehyde with butlyamine and sodium borhydride, and then separated by silica gel flash column chromatography in 61.5% yield. 2,6-Di-tert-butyl-4-(butylamino)methylphenol (2.91 g, 0.01 mol) and morpholine (1.3 g, 0.015 mol) was dissolved in THF (30 ml) and heated to reflux for 6 h. Then the THF and the extra morpholine was evaporated under reduced pressure.The residue was washed with methanol(10 ml) and the title product (2.89 g) was obtained in 89.5% yield. Suitable crystals were obtained by slow evaporation of a mixture of ethyl acetate and THF.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl) with Uiso(H) = 1.2(aromatic) or 1.5(methyl)Ueq(C). H atoms attached to O were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.85 (3) Å) with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
Molecular diagram of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Packing diagram of (I) viewed down the unique crystallographic b axis, showing H-bonding interactions in dashed lines.

Crystal data

C19H31NO2·H2OF000 = 712
Mr = 323.46Dx = 1.097 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2606 reflections
a = 10.1461 (14) Åθ = 2.2–24.6º
b = 9.7118 (12) ŵ = 0.07 mm1
c = 19.966 (2) ÅT = 294 (2) K
β = 95.166 (8)ºBlock, colourless
V = 1959.4 (4) Å30.32 × 0.30 × 0.26 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3412 independent reflections
Radiation source: fine-focus sealed tube2098 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.044
T = 294(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→12
Tmin = 0.97, Tmax = 0.98k = −11→11
9174 measured reflectionsl = −23→23

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.051  w = 1/[σ2(Fo2) + (0.0769P)2 + 0.2168P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.151(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.21 e Å3
3412 reflectionsΔρmin = −0.22 e Å3
224 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.059 (5)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.67458 (16)0.44480 (17)0.64823 (7)0.0583 (5)
H10.591 (3)0.445 (3)0.6451 (13)0.087*
O20.77839 (18)0.91614 (16)0.27118 (7)0.0722 (5)
N10.83158 (15)0.70489 (15)0.36930 (8)0.0416 (4)
C10.85010 (18)0.5892 (2)0.48162 (10)0.0439 (5)
C20.78398 (19)0.4645 (2)0.47924 (9)0.0434 (5)
H20.78010.41390.43960.052*
C30.72305 (17)0.41118 (19)0.53319 (9)0.0387 (5)
C40.72865 (18)0.4931 (2)0.59152 (9)0.0404 (5)
C50.79608 (19)0.6196 (2)0.59699 (9)0.0423 (5)
C60.85611 (19)0.6634 (2)0.54058 (10)0.0470 (5)
H60.90220.74640.54290.056*
C70.8063 (2)0.7062 (2)0.66190 (11)0.0547 (6)
C80.6688 (3)0.7499 (3)0.67925 (14)0.0918 (10)
H8A0.61810.66970.68830.138*
H8B0.62490.79940.64200.138*
H8C0.67700.80810.71830.138*
C90.8780 (3)0.6257 (3)0.72030 (11)0.0782 (8)
H9A0.88140.68030.76050.117*
H9B0.96640.60470.71000.117*
H9C0.83110.54170.72700.117*
C100.8867 (3)0.8386 (3)0.65505 (14)0.0845 (9)
H10A0.89050.88930.69640.127*
H10B0.84520.89390.61930.127*
H10C0.97490.81530.64510.127*
C110.6553 (2)0.2692 (2)0.52747 (10)0.0473 (5)
C120.5064 (2)0.2830 (3)0.52936 (14)0.0780 (8)
H12A0.47230.34610.49500.117*
H12B0.48740.31710.57260.117*
H12C0.46550.19460.52160.117*
C130.7121 (3)0.1735 (3)0.58367 (15)0.0959 (10)
H13A0.66860.08580.57940.144*
H13B0.69830.21320.62650.144*
H13C0.80530.16140.58040.144*
C140.6772 (3)0.1980 (3)0.46143 (15)0.0934 (10)
H14A0.77030.18460.45860.140*
H14B0.64190.25420.42450.140*
H14C0.63330.11040.45950.140*
C150.9192 (2)0.6354 (2)0.42175 (10)0.0561 (6)
H15A0.99030.69780.43710.067*
H15B0.95870.55580.40210.067*
C160.8039 (2)0.8458 (2)0.38799 (10)0.0503 (5)
H16A0.88640.89580.39670.060*
H16B0.75910.84590.42890.060*
C170.7184 (3)0.9162 (2)0.33275 (11)0.0682 (7)
H17A0.63360.86960.32640.082*
H17B0.70251.01050.34590.082*
C180.8050 (3)0.7790 (2)0.25213 (11)0.0656 (7)
H18A0.84710.77980.21040.079*
H18B0.72240.72880.24440.079*
C190.8934 (2)0.7072 (2)0.30551 (10)0.0558 (6)
H19A0.90980.61360.29140.067*
H19B0.97780.75470.31180.067*
O30.41145 (17)0.4475 (2)0.66808 (10)0.0767 (6)
H3A0.346 (3)0.403 (3)0.6527 (16)0.115*
H3B0.399 (3)0.471 (3)0.7087 (16)0.115*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0548 (9)0.0818 (11)0.0398 (8)−0.0044 (8)0.0121 (7)0.0068 (7)
O20.1162 (14)0.0551 (10)0.0476 (10)0.0132 (9)0.0196 (9)0.0160 (8)
N10.0445 (9)0.0453 (10)0.0363 (9)0.0052 (7)0.0108 (7)0.0080 (7)
C10.0354 (11)0.0524 (12)0.0441 (12)0.0105 (9)0.0040 (9)0.0157 (10)
C20.0432 (11)0.0515 (12)0.0356 (11)0.0133 (9)0.0045 (9)0.0030 (9)
C30.0363 (10)0.0429 (11)0.0370 (11)0.0086 (8)0.0040 (8)0.0052 (9)
C40.0377 (10)0.0491 (12)0.0347 (11)0.0070 (9)0.0054 (8)0.0077 (9)
C50.0406 (11)0.0436 (11)0.0420 (11)0.0091 (9)−0.0003 (9)0.0033 (9)
C60.0422 (12)0.0452 (12)0.0522 (13)0.0024 (9)−0.0030 (9)0.0102 (10)
C70.0603 (14)0.0503 (13)0.0521 (13)0.0063 (10)−0.0022 (11)−0.0082 (10)
C80.083 (2)0.092 (2)0.102 (2)0.0162 (16)0.0144 (17)−0.0440 (18)
C90.102 (2)0.0789 (18)0.0495 (14)0.0049 (15)−0.0180 (14)−0.0085 (13)
C100.103 (2)0.0620 (16)0.0854 (19)−0.0092 (15)−0.0098 (16)−0.0134 (14)
C110.0504 (13)0.0439 (12)0.0481 (12)0.0047 (9)0.0067 (10)−0.0006 (9)
C120.0541 (15)0.0781 (17)0.102 (2)−0.0066 (13)0.0081 (14)−0.0257 (15)
C130.109 (2)0.0592 (16)0.113 (2)−0.0132 (15)−0.0220 (19)0.0291 (16)
C140.118 (3)0.0663 (17)0.103 (2)−0.0170 (16)0.0472 (19)−0.0360 (16)
C150.0447 (12)0.0689 (15)0.0561 (13)0.0127 (10)0.0117 (10)0.0226 (11)
C160.0641 (14)0.0479 (12)0.0399 (11)0.0012 (10)0.0097 (10)−0.0008 (10)
C170.097 (2)0.0583 (14)0.0510 (14)0.0245 (13)0.0166 (13)0.0106 (11)
C180.0961 (18)0.0651 (16)0.0373 (12)0.0021 (13)0.0152 (12)0.0048 (11)
C190.0669 (15)0.0560 (13)0.0477 (13)0.0063 (11)0.0230 (11)0.0037 (10)
O30.0590 (11)0.1028 (15)0.0710 (12)−0.0152 (9)0.0209 (9)−0.0255 (10)

Geometric parameters (Å, °)

O1—C41.384 (2)C10—H10B0.9600
O1—H10.85 (3)C10—H10C0.9600
O2—C181.418 (3)C11—C121.520 (3)
O2—C171.420 (3)C11—C141.523 (3)
N1—C161.452 (2)C11—C131.529 (3)
N1—C191.470 (2)C12—H12A0.9600
N1—C151.475 (2)C12—H12B0.9600
C1—C61.377 (3)C12—H12C0.9600
C1—C21.383 (3)C13—H13A0.9600
C1—C151.508 (3)C13—H13B0.9600
C2—C31.389 (3)C13—H13C0.9600
C2—H20.9300C14—H14A0.9600
C3—C41.407 (3)C14—H14B0.9600
C3—C111.540 (3)C14—H14C0.9600
C4—C51.406 (3)C15—H15A0.9700
C5—C61.394 (3)C15—H15B0.9700
C5—C71.541 (3)C16—C171.505 (3)
C6—H60.9300C16—H16A0.9700
C7—C81.527 (3)C16—H16B0.9700
C7—C91.532 (3)C17—H17A0.9700
C7—C101.535 (3)C17—H17B0.9700
C8—H8A0.9600C18—C191.501 (3)
C8—H8B0.9600C18—H18A0.9700
C8—H8C0.9600C18—H18B0.9700
C9—H9A0.9600C19—H19A0.9700
C9—H9B0.9600C19—H19B0.9700
C9—H9C0.9600O3—H3A0.83 (3)
C10—H10A0.9600O3—H3B0.86 (3)
C4—O1—H1114.2 (18)C14—C11—C3111.80 (18)
C18—O2—C17109.84 (16)C13—C11—C3110.69 (17)
C16—N1—C19108.42 (15)C11—C12—H12A109.5
C16—N1—C15111.52 (16)C11—C12—H12B109.5
C19—N1—C15110.19 (15)H12A—C12—H12B109.5
C6—C1—C2118.17 (18)C11—C12—H12C109.5
C6—C1—C15122.24 (19)H12A—C12—H12C109.5
C2—C1—C15119.50 (19)H12B—C12—H12C109.5
C1—C2—C3123.23 (18)C11—C13—H13A109.5
C1—C2—H2118.4C11—C13—H13B109.5
C3—C2—H2118.4H13A—C13—H13B109.5
C2—C3—C4116.30 (18)C11—C13—H13C109.5
C2—C3—C11120.20 (17)H13A—C13—H13C109.5
C4—C3—C11123.50 (17)H13B—C13—H13C109.5
O1—C4—C5117.30 (17)C11—C14—H14A109.5
O1—C4—C3119.73 (17)C11—C14—H14B109.5
C5—C4—C3122.79 (17)H14A—C14—H14B109.5
C6—C5—C4116.67 (18)C11—C14—H14C109.5
C6—C5—C7120.78 (18)H14A—C14—H14C109.5
C4—C5—C7122.54 (18)H14B—C14—H14C109.5
C1—C6—C5122.79 (19)N1—C15—C1113.94 (16)
C1—C6—H6118.6N1—C15—H15A108.8
C5—C6—H6118.6C1—C15—H15A108.8
C8—C7—C9110.5 (2)N1—C15—H15B108.8
C8—C7—C10106.9 (2)C1—C15—H15B108.8
C9—C7—C10106.0 (2)H15A—C15—H15B107.7
C8—C7—C5110.41 (18)N1—C16—C17110.61 (17)
C9—C7—C5110.66 (17)N1—C16—H16A109.5
C10—C7—C5112.2 (2)C17—C16—H16A109.5
C7—C8—H8A109.5N1—C16—H16B109.5
C7—C8—H8B109.5C17—C16—H16B109.5
H8A—C8—H8B109.5H16A—C16—H16B108.1
C7—C8—H8C109.5O2—C17—C16111.77 (19)
H8A—C8—H8C109.5O2—C17—H17A109.3
H8B—C8—H8C109.5C16—C17—H17A109.3
C7—C9—H9A109.5O2—C17—H17B109.3
C7—C9—H9B109.5C16—C17—H17B109.3
H9A—C9—H9B109.5H17A—C17—H17B107.9
C7—C9—H9C109.5O2—C18—C19111.22 (19)
H9A—C9—H9C109.5O2—C18—H18A109.4
H9B—C9—H9C109.5C19—C18—H18A109.4
C7—C10—H10A109.5O2—C18—H18B109.4
C7—C10—H10B109.5C19—C18—H18B109.4
H10A—C10—H10B109.5H18A—C18—H18B108.0
C7—C10—H10C109.5N1—C19—C18110.34 (18)
H10A—C10—H10C109.5N1—C19—H19A109.6
H10B—C10—H10C109.5C18—C19—H19A109.6
C12—C11—C14106.5 (2)N1—C19—H19B109.6
C12—C11—C13110.2 (2)C18—C19—H19B109.6
C14—C11—C13106.5 (2)H19A—C19—H19B108.1
C12—C11—C3110.90 (17)H3A—O3—H3B108 (3)
C6—C1—C2—C30.3 (3)C6—C5—C7—C100.1 (3)
C15—C1—C2—C3176.91 (17)C4—C5—C7—C10179.16 (19)
C1—C2—C3—C41.6 (3)C2—C3—C11—C12−113.3 (2)
C1—C2—C3—C11−177.92 (17)C4—C3—C11—C1267.3 (2)
C2—C3—C4—O1−177.58 (16)C2—C3—C11—C145.5 (3)
C11—C3—C4—O11.9 (3)C4—C3—C11—C14−174.0 (2)
C2—C3—C4—C5−2.5 (3)C2—C3—C11—C13124.1 (2)
C11—C3—C4—C5177.00 (17)C4—C3—C11—C13−55.4 (3)
O1—C4—C5—C6176.67 (16)C16—N1—C15—C177.3 (2)
C3—C4—C5—C61.4 (3)C19—N1—C15—C1−162.21 (18)
O1—C4—C5—C7−2.4 (3)C6—C1—C15—N1−99.6 (2)
C3—C4—C5—C7−177.63 (17)C2—C1—C15—N184.0 (2)
C2—C1—C6—C5−1.5 (3)C19—N1—C16—C1756.5 (2)
C15—C1—C6—C5−177.96 (17)C15—N1—C16—C17177.96 (17)
C4—C5—C6—C10.6 (3)C18—O2—C17—C1657.6 (3)
C7—C5—C6—C1179.70 (17)N1—C16—C17—O2−57.9 (3)
C6—C5—C7—C8119.3 (2)C17—O2—C18—C19−58.2 (3)
C4—C5—C7—C8−61.6 (3)C16—N1—C19—C18−57.2 (2)
C6—C5—C7—C9−118.0 (2)C15—N1—C19—C18−179.50 (18)
C4—C5—C7—C961.0 (3)O2—C18—C19—N159.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3B···O2i0.86 (3)2.13 (3)2.884 (2)146 (3)
O3—H3A···N1ii0.83 (3)2.10 (3)2.915 (2)170 (3)
O1—H1···O30.85 (3)1.91 (3)2.734 (2)162 (3)
C12—H12B···O30.962.473.410 (3)167

Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2147).

References

  • Bruker (1997). SMART, SAINT and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Rieker, A. (1968). Tetrahedron, 24, 103–115.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Shu, X.-G., Zeng, T., Chen, L.-G., Yan, F.-Y. & Zhang, Y.-C. (2005). Acta Cryst. E61, o4192–o4194.
  • Steiner, Th. (1996). Crystallogr. Rev.6, 1–57.
  • Yamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. Part A Polym. Chem.35, 2431–2439.
  • Zeng, T. & Chen, L.-G. (2006). Acta Cryst. E62, o2916–o2917.
  • Zeng, T., Chen, L.-G., Li, J.-S., Zhang, Y.-C. & Deng, Y. (2006). J. Chem. Res. (M), pp. 794–796.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography