PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o476–o477.
Published online 2008 January 23. doi:  10.1107/S1600536808001189
PMCID: PMC2960251

2-(4-Amino-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-ylmeth­yl)isoindoline-1,3-dione

Abstract

The title compound, C11H9N5O2S, was synthesized from N-phthaloylglycine and thio­carbohydrazide by the fusion method. This is the first report of a triazole derivative of N-phthaloylglycine. The title compound exists in the thione form. The mol­ecule is non-planar, with a dihedral angle between the isoindoline ring system and the triazole ring system of 82.24 (5)°. The crystal structure is stabilized by inter­molecular hydrogen bonding linking the mol­ecules into a three-dimensional network.

Related literature

For related literature, see: Allen et al. (1987 [triangle]); Antunes et al. (1998 [triangle]); Barooah et al. (2006a [triangle],b [triangle]); Brana & Ramos (2001 [triangle]); Chandrasekhar et al. (1999 [triangle]); Eugenio, et al. (2004 [triangle]); Görner et al. (2002 [triangle]); Khan & Ismail (2002 [triangle]); Matijević-Sosa & Cvetnić (2005 [triangle]); Neto et al. (1993 [triangle]); Ng (1992 [triangle]); Shariat & Abdollahi (2004 [triangle]); Wang et al. (1998 [triangle]); Xu et al. (2005 [triangle]), Zhang et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o476-scheme1.jpg

Experimental

Crystal data

  • C11H9N5O2S
  • M r = 275.29
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o476-efi1.jpg
  • a = 5.1961 (11) Å
  • b = 19.952 (4) Å
  • c = 11.336 (3) Å
  • V = 1175.2 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 100 (2) K
  • 0.60 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker 2001 [triangle]) T min = 0.849, T max = 0.946
  • 6288 measured reflections
  • 2361 independent reflections
  • 2281 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.069
  • S = 1.04
  • 2361 reflections
  • 184 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.16 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 1091 Friedel pairs
  • Flack parameter: −0.04 (6)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SMART; data reduction: SAINT (Bruker, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001189/rn2038sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001189/rn2038Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge Allama Iqbal Open University, Islamabad, Pakistan, for providing research facilities.

supplementary crystallographic information

Comment

Phthalimide and its derivatives such as N-phthaloylamino acids are used for the synthesis of peptide bonds in solid phase synthesis (Eugenio et al., 2004; Chandrasekhar et al., 1999). Such phthalimide derivatives undergo photochemical reactions such as photochemical decomposition and decarboxylation (Görner et al., 2002). Moreover N-phthaloylamino acids and their derivatives possess a wide range of biological activities such as hypolipidemic (Neto et al., 1993) analgesic (Antunes et al., 1998) antimicrobial (Matijević-Sosa & Cvetnić, 2005) and DNA cleaving abilities (Brana & Ramos, 2001). Among the N-phthaloylamino acids, N-phthaloylglycine has been the most widely studied. Such studies include cleavage of N-phthaloylglycine with various amines (Khan & Ismail, 2002), metal complexes with interesting supramolecular structures (Barooah et al., 2006b) and adduct formation of N-phthaloylglycine with various aromatic amines and hydroxyl-aromatics (Barooah et al., 2006a). The heterocyclic derivatives of N-phthaloylglycine are also reported in literature such as oxadiazole (Antunes et al., 1998) and benzoxazinone (Shariat & Abdollahi, 2004). Keeping in view the importance of structural and biological aspects of N-phthaloylamino acids, the present work is aiming to incorporate 1,2,4-triazole ring with N-phthaloylglycine moiety. To the best of our knowledge this is the first crystal structure report on the 1,2,4-triazole derivative of N-phthaloylglycine.

The crystallographic analysis demonstrates that the title compound (I) exists as the thione form rather than the thiol as shown in scheme 1 and Fig. 1. The triazole ring is essentially planar. The C?S bond length [1.6758 (19) Å] is slightly longer than a pure double bond [1.61 Å] (Allen et al., 1987) and is comparable with analogous compounds (Zhang et al., 2004; Xu et al.,2005). The CN bond distances of the triazole ring are in the range 1.297 (2)–1.374 (2) Å in which the N4—C10 bond shows double bond character. The other CN bonds have values intermediate between those expected for single and double C—N bonds [1.47 and 1.27 Å respectively (Allen et al., 1987)] among which the N2—C11 bond length is slightly longer than that of N3—C11 (Wang et al., 1998). The NN bond lengths and all bond angles in triazole ring show no significant difference when compared to analogous compounds.

The phthalimide is also planar and all bond lengths and angles in the phthalimide ring are within normal ranges (Ng, 1992). The dihedral angle between the isoindoline and triazole ring systems is 82.24 (5)°, indicating the nonplanarity of the molecule as a whole.

The molecules are linked into pairs by the intermolecular hydrogen bond N5—H5N···S1 (symmetry equivalent x + 1/2, -y + 3/2, z) and then into sheets by the N3—H3N···O1 (-x, -y + 1, z - 1/2) contact, and finally into a three-dimensional network by the hydrogen bonds N5—H5M···O2 (symmetry equivalent x - 1, y, z) linking the sheets in the a direction.

Experimental

The title compound (I) was synthesized by the reaction of N-phthaloylglycine and thiocarbohydrazide by the fusion method. A mixture of N-phthaloylglycine (0.01 mol) and thiocarbohydrazide (0.01 mol) contained in a round bottom flask was heated until the contents melted. The mixture was kept at this temperature for 25–30 min. after cooling to room temperature the mixture was triturated with methanol and the solid obtained was filtered, washed with methanol and recrystallized from a mixture (1:1) of ethanol and acetonitrile to obtain suitable crystals for x-ray analysis.

Refinement

H atoms bonded to C were included in calculated positions with C—H distances ranging from 0.95–0.99 Å and Ueq 1.2 times those of the parent atoms; those bonded to N were found by difference Fourier techniques and refined isotropically. The absolute configuration was determined by refinement of the Flack parameter.

Figures

Fig. 1.
Plot of the title compound with ellipsoids drawn at the 50% probability level.
Fig. 2.
Packing of the title compound viewed down a, showing hydrogen bonding contacts with dashed lines.

Crystal data

C11H9N5O2SF000 = 568
Mr = 275.29Dx = 1.556 Mg m3
Orthorhombic, Pna21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P2c-2nCell parameters from 934 reflections
a = 5.1961 (11) Åθ = 3.6–26.4º
b = 19.952 (4) ŵ = 0.28 mm1
c = 11.336 (3) ÅT = 100 (2) K
V = 1175.2 (4) Å3Plate, colourless
Z = 40.60 × 0.20 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer2361 independent reflections
Radiation source: fine-focus sealed tube2281 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 100(2) Kθmax = 26.4º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Bruker 2001)h = −6→6
Tmin = 0.849, Tmax = 0.946k = −24→17
6288 measured reflectionsl = −14→13

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028  w = 1/[σ2(Fo2) + (0.0413P)2 + 0.1704P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.30 e Å3
2361 reflectionsΔρmin = −0.16 e Å3
184 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 1091 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.04 (6)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1−0.14861 (8)0.68164 (2)0.30015 (4)0.01625 (11)
O10.1683 (2)0.52047 (6)0.66973 (11)0.0180 (3)
O20.8375 (3)0.66831 (7)0.68855 (12)0.0214 (3)
N10.5265 (3)0.58747 (7)0.65527 (13)0.0147 (3)
N20.2503 (3)0.63673 (7)0.43781 (13)0.0130 (3)
N30.1312 (3)0.56622 (7)0.30883 (15)0.0158 (3)
H3N0.051 (5)0.5428 (11)0.259 (2)0.025 (6)*
N40.3250 (3)0.53474 (8)0.37168 (15)0.0166 (3)
N50.2864 (3)0.69419 (8)0.50736 (16)0.0154 (3)
H5M0.141 (4)0.6996 (11)0.553 (2)0.018 (6)*
H5N0.297 (4)0.7244 (11)0.4569 (19)0.012 (5)*
C10.3120 (3)0.56238 (9)0.71243 (16)0.0150 (4)
C20.3011 (4)0.59671 (9)0.82861 (14)0.0152 (4)
C30.1294 (4)0.59041 (10)0.92077 (16)0.0182 (4)
H3−0.01280.56060.91630.022*
C40.1732 (4)0.62951 (10)1.02058 (17)0.0214 (4)
H40.05740.62651.08520.026*
C50.3824 (4)0.67281 (10)1.02788 (19)0.0230 (5)
H50.40970.69801.09790.028*
C60.5528 (4)0.67960 (9)0.93312 (18)0.0211 (4)
H60.69530.70930.93700.025*
C70.5063 (4)0.64151 (9)0.83394 (16)0.0165 (4)
C80.6511 (3)0.63748 (9)0.72124 (18)0.0176 (4)
C90.6033 (3)0.56940 (10)0.53675 (16)0.0154 (4)
H9A0.65600.52170.53580.018*
H9B0.75440.59670.51380.018*
C100.3944 (3)0.57960 (9)0.44821 (17)0.0147 (4)
C110.0778 (4)0.62815 (9)0.34723 (15)0.0138 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0147 (2)0.0187 (2)0.0154 (2)0.00169 (17)−0.0019 (2)−0.0004 (2)
O10.0184 (7)0.0189 (6)0.0168 (7)−0.0046 (5)0.0012 (5)0.0002 (5)
O20.0170 (7)0.0237 (7)0.0234 (8)−0.0047 (6)−0.0012 (6)0.0008 (6)
N10.0137 (8)0.0169 (7)0.0135 (8)−0.0017 (6)−0.0014 (6)0.0016 (6)
N20.0128 (7)0.0125 (7)0.0136 (7)−0.0016 (6)0.0011 (6)−0.0007 (6)
N30.0188 (7)0.0143 (7)0.0142 (8)−0.0003 (6)−0.0030 (7)−0.0020 (7)
N40.0180 (8)0.0166 (7)0.0153 (8)−0.0001 (6)−0.0003 (6)0.0009 (6)
N50.0194 (8)0.0115 (7)0.0153 (8)−0.0002 (6)0.0011 (7)−0.0010 (6)
C10.0143 (9)0.0160 (9)0.0147 (9)0.0023 (7)−0.0003 (7)0.0046 (7)
C20.0174 (9)0.0145 (8)0.0137 (9)0.0034 (7)−0.0024 (7)0.0011 (7)
C30.0185 (9)0.0198 (10)0.0162 (10)0.0043 (8)0.0013 (7)0.0038 (8)
C40.0258 (10)0.0256 (11)0.0130 (10)0.0101 (8)0.0028 (8)0.0034 (8)
C50.0283 (12)0.0221 (11)0.0187 (11)0.0083 (8)−0.0055 (8)−0.0035 (8)
C60.0217 (10)0.0178 (10)0.0238 (11)0.0035 (8)−0.0058 (9)−0.0047 (8)
C70.0146 (9)0.0158 (9)0.0192 (9)0.0025 (7)−0.0044 (7)0.0024 (7)
C80.0156 (9)0.0163 (9)0.0209 (10)0.0009 (7)−0.0049 (8)0.0007 (7)
C90.0137 (9)0.0179 (10)0.0147 (9)0.0006 (7)0.0030 (7)0.0015 (7)
C100.0158 (9)0.0136 (9)0.0148 (9)−0.0017 (7)0.0042 (7)0.0015 (7)
C110.0141 (8)0.0149 (9)0.0123 (8)−0.0039 (7)0.0026 (7)0.0009 (7)

Geometric parameters (Å, °)

S1—C111.6758 (19)C1—C21.486 (2)
O1—C11.221 (2)C2—C31.379 (3)
O2—C81.206 (2)C2—C71.393 (3)
N1—C11.383 (2)C3—C41.393 (3)
N1—C81.405 (2)C3—H30.9500
N1—C91.447 (2)C4—C51.391 (3)
N2—C101.369 (2)C4—H40.9500
N2—C111.374 (2)C5—C61.399 (3)
N2—N51.404 (2)C5—H50.9500
N3—C111.339 (2)C6—C71.378 (3)
N3—N41.384 (2)C6—H60.9500
N3—H3N0.84 (2)C7—C81.485 (3)
N4—C101.297 (2)C9—C101.492 (3)
N5—H5M0.92 (2)C9—H9A0.9900
N5—H5N0.83 (2)C9—H9B0.9900
C1—N1—C8112.26 (15)C4—C5—C6120.62 (18)
C1—N1—C9124.53 (16)C4—C5—H5119.7
C8—N1—C9122.97 (16)C6—C5—H5119.7
C10—N2—C11108.51 (15)C7—C6—C5117.51 (19)
C10—N2—N5123.96 (16)C7—C6—H6121.2
C11—N2—N5127.49 (15)C5—C6—H6121.2
C11—N3—N4113.71 (16)C6—C7—C2121.57 (18)
C11—N3—H3N128.9 (17)C6—C7—C8130.00 (18)
N4—N3—H3N116.8 (16)C2—C7—C8108.41 (15)
C10—N4—N3103.49 (15)O2—C8—N1124.66 (19)
N2—N5—H5M107.6 (14)O2—C8—C7130.08 (18)
N2—N5—H5N102.3 (14)N1—C8—C7105.26 (15)
H5M—N5—H5N111 (2)N1—C9—C10112.97 (14)
O1—C1—N1123.71 (17)N1—C9—H9A109.0
O1—C1—C2130.07 (17)C10—C9—H9A109.0
N1—C1—C2106.21 (15)N1—C9—H9B109.0
C3—C2—C7121.38 (17)C10—C9—H9B109.0
C3—C2—C1130.85 (18)H9A—C9—H9B107.8
C7—C2—C1107.77 (15)N4—C10—N2111.40 (16)
C2—C3—C4117.30 (18)N4—C10—C9123.90 (16)
C2—C3—H3121.4N2—C10—C9124.69 (16)
C4—C3—H3121.4N3—C11—N2102.87 (15)
C5—C4—C3121.58 (18)N3—C11—S1129.02 (15)
C5—C4—H4119.2N2—C11—S1128.09 (14)
C3—C4—H4119.2
C11—N3—N4—C10−1.5 (2)C1—N1—C8—C73.1 (2)
C8—N1—C1—O1176.97 (17)C9—N1—C8—C7177.81 (15)
C9—N1—C1—O12.3 (3)C6—C7—C8—O2−3.0 (3)
C8—N1—C1—C2−2.7 (2)C2—C7—C8—O2178.56 (19)
C9—N1—C1—C2−177.36 (16)C6—C7—C8—N1176.21 (18)
O1—C1—C2—C31.0 (3)C2—C7—C8—N1−2.19 (19)
N1—C1—C2—C3−179.35 (18)C1—N1—C9—C1054.3 (2)
O1—C1—C2—C7−178.46 (18)C8—N1—C9—C10−119.80 (18)
N1—C1—C2—C71.21 (19)N3—N4—C10—N21.3 (2)
C7—C2—C3—C4−1.5 (3)N3—N4—C10—C9−179.32 (16)
C1—C2—C3—C4179.12 (19)C11—N2—C10—N4−0.7 (2)
C2—C3—C4—C5−0.5 (3)N5—N2—C10—N4−178.54 (16)
C3—C4—C5—C61.6 (3)C11—N2—C10—C9179.92 (16)
C4—C5—C6—C7−0.6 (3)N5—N2—C10—C92.0 (3)
C5—C6—C7—C2−1.4 (3)N1—C9—C10—N4−130.71 (18)
C5—C6—C7—C8−179.66 (18)N1—C9—C10—N248.6 (2)
C3—C2—C7—C62.6 (3)N4—N3—C11—N21.11 (19)
C1—C2—C7—C6−177.94 (17)N4—N3—C11—S1−177.21 (14)
C3—C2—C7—C8−178.88 (17)C10—N2—C11—N3−0.28 (19)
C1—C2—C7—C80.62 (19)N5—N2—C11—N3177.50 (17)
C1—N1—C8—O2−177.62 (17)C10—N2—C11—S1178.06 (14)
C9—N1—C8—O2−2.9 (3)N5—N2—C11—S1−4.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N5—H5M···O2i0.92 (2)2.29 (2)3.151 (2)155.6 (19)
N5—H5N···S1ii0.83 (2)2.60 (2)3.430 (2)177.4 (18)
N3—H3N···O1iii0.84 (2)1.98 (2)2.811 (2)169 (2)

Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+3/2, z; (iii) −x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2038).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Antunes, R., Batista, H., Srivastava, R. M., Thomas, G. & Araujo, C. C. (1998). Bioorg. Med. Chem. Lett.8, 3071–3076. [PubMed]
  • Barooah, N., Sarma, R. J., Batsanov, A. S. & Baruah, J. B. (2006a). J. Mol. Struct.791, 122–130.
  • Barooah, N., Sarma, R. J., Batsanov, A. S. & Baruah, J. B. (2006b). Polyhedron, 25, 17–24.
  • Brana, M. F. & Ramos, A. (2001). Curr. Med. Chem. Anticancer Agents, 1, 237–255. [PubMed]
  • Bruker (2001). SMART (Version 5.625) and SADABS (Version 2.03a). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2002). SAINT Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chandrasekhar, S., Padmaja, M. B. & Raza, A. (1999). Synlett, pp. 1597–1599.
  • Eugenio, V. M., Rothman, D. M. & Imperiali, B. (2004). Org. Biomol. Chem.2, 1965–1966. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Görner, H., Oelgemöller, M. & Griesbeck, A. G. (2002). J. Phys. Chem. A, 106, 1458–1464.
  • Khan, M. N. & Ismail, N. H. (2002). J. Chem. Res.12, 593–595.
  • Matijević-Sosa, J. & Cvetnić, Z. (2005). Acta Pharm.55, 387–399. [PubMed]
  • Neto, M. D. C., Popheiro, M. C. F. & Neto, B. B. (1993). J. Braz. Chem. Soc.4, 139–142.
  • Ng, S. W. (1992). Acta Cryst. C48, 1694–1695.
  • Shariat, M. & Abdollahi, S. (2004). Molecules, 9, 705–712. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wang, Z., Jian, F., Duan, C., Bai, Z. & You, X. (1998). Acta Cryst. C54, 1927–1929.
  • Xu, L.-Z., Yu, G.-P., Xu, F.-L. & Li, W.-H. (2005). Acta Cryst. E61, o2061–o2062.
  • Zhang, L.-X., Zhang, A.-J., Lei, X.-X., Zou, K.-H. & Ng, S. W. (2004). Acta Cryst. E60, o613–o615.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography