PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m415.
Published online 2008 January 25. doi:  10.1107/S160053680800189X
PMCID: PMC2960250

Bis(1-adamantylammonium) tetra­chloridocobaltate(II)

Abstract

The CoII atom in the title salt, (C10H18N)2[CoCl4], exists in a tetra­hedral coordination geometry. The asymmetric unit has two cations that lie on different special positions of site symmetry m; the anion lies on another special position of site symmetry m.

Related literature

Some amines do not form adducts with cobalt(II) chloride; in the reactions, the amines themselves are protonated. For 1,3-propane­diammonium tetra­chloridocobaltate, see: Guo et al. (1992 [triangle]); for tricyclo­hexyl­ammonium chloride tetra­chloro­cobaltate, see: Geiser et al. (1984 [triangle]); for 4,4′-bipyridinium tetra­chloridocobaltate, see: Barbour et al. (1996 [triangle]) and Gillon et al. (2000 [triangle]); for bis­(4-dimethyl­amino)pyridinium tetra­chlorido­cobaltate, see: Haddad et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m415-scheme1.jpg

Experimental

Crystal data

  • (C10H18N)2[CoCl4]
  • M r = 505.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m415-efi1.jpg
  • a = 30.6005 (6) Å
  • b = 7.3046 (1) Å
  • c = 11.0009 (2) Å
  • β = 104.087 (1)°
  • V = 2385.02 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.18 mm−1
  • T = 295 (2) K
  • 0.40 × 0.22 × 0.13 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.709, T max = 0.862
  • 11019 measured reflections
  • 2946 independent reflections
  • 2115 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.100
  • S = 1.04
  • 2946 reflections
  • 142 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680800189X/hj2005sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800189X/hj2005Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Foundation of Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces and the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

1-Aminoadamantane (6.05 g, 40 mmol) and salicylaldehyde (5.01 g, 41 mmol) were heated in ethanol (50 ml) for 1 h. The N-salicylidene-1-aminoadamantane that separated was collected in 70% yield, m.p. 366 K. Cobalt dichloride hexahydrate (1 mmol) dissolved in ethanol (10 ml) was reacted with the Schiff base (2 mmol) dissolved in alcohol (5 ml) to give a blue solution. Blue crystals separated from the solution after three weeks.

Refinement

H atoms were generated geometrically (C–H 0.97 to 0.98 Å, N–H 0.89 |%A) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 or 1.5Ueq of the parent atom.

Figures

Fig. 1.
Thermal ellipsoid plot of 2[C10H18N] [CoCl4]; displacement ellipsoids are drawn at the 50% probability level, and H atoms as spheres of arbitrary radius. [Symmery code (i) x, –y, z.]

Crystal data

(C10H18N)2[CoCl4]F000 = 1060
Mr = 505.24Dx = 1.407 Mg m3
Monoclinic, C2/mMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 3080 reflections
a = 30.6005 (6) Åθ = 2.6–22.3º
b = 7.3046 (1) ŵ = 1.18 mm1
c = 11.0009 (2) ÅT = 295 (2) K
β = 104.087 (1)ºBlock, blue
V = 2385.02 (7) Å30.40 × 0.22 × 0.13 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer2946 independent reflections
Radiation source: fine-focus sealed tube2115 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.027
T = 295(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −28→39
Tmin = 0.709, Tmax = 0.862k = −9→7
11019 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.100  w = 1/[σ2(Fo2) + (0.0368P)2 + 2.5214P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2946 reflectionsΔρmax = 0.52 e Å3
142 parametersΔρmin = −0.49 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N10.18030 (9)0.50000.3577 (3)0.0615 (9)
H1A0.19210.40060.33150.092*0.50
H1B0.18630.49990.44100.092*
H1C0.19210.59950.33160.092*0.50
C10.13007 (10)0.50000.3050 (3)0.0452 (8)
C20.11951 (12)0.50000.1618 (3)0.0713 (13)
H2A0.13240.39230.13240.086*0.50
H2B0.13240.60770.13240.086*0.50
C30.06830 (12)0.50000.1108 (3)0.0668 (12)
H30.06110.50000.01900.080*
C40.04858 (9)0.3300 (5)0.1559 (2)0.0737 (9)
H4A0.06130.22140.12710.088*
H4B0.01620.32770.12210.088*
C50.05938 (9)0.3314 (4)0.2990 (2)0.0650 (8)
H50.04650.22220.32860.078*
C60.11079 (8)0.3304 (4)0.3507 (2)0.0568 (7)
H6A0.11810.32890.44150.068*
H6B0.12360.22190.32200.068*
C70.03975 (12)0.50000.3436 (3)0.0691 (12)
H7A0.04630.50000.43440.083*
H7B0.00730.50000.31160.083*
N20.30310 (10)0.50000.1192 (3)0.0888 (13)
H2C0.29040.59890.14310.133*0.50
H2D0.29050.40000.14190.133*0.50
H2E0.29910.50110.03630.133*
C80.35290 (10)0.50000.1809 (3)0.0483 (8)
C90.35959 (12)0.50000.3224 (3)0.0530 (9)
H9A0.34570.60770.34840.064*0.50
H9B0.34570.39230.34840.064*0.50
C100.40942 (14)0.50000.3820 (3)0.0678 (11)
H100.41420.50000.47340.081*
C110.43062 (10)0.3295 (5)0.3422 (3)0.0803 (10)
H11A0.41670.22120.36750.096*
H11B0.46250.32660.38260.096*
C120.42392 (9)0.3305 (4)0.1996 (2)0.0650 (7)
H12A0.43770.22080.17380.078*
C130.37368 (9)0.3305 (4)0.1389 (2)0.0608 (7)
H13A0.36870.33040.04830.073*
H13B0.35980.22160.16340.073*
C140.44527 (13)0.50000.1588 (4)0.0678 (11)
H14A0.47740.50000.19630.081*
H14B0.44080.50000.06840.081*
Co10.244385 (15)0.00000.28152 (4)0.04942 (16)
Cl10.22131 (2)0.24581 (10)0.15542 (7)0.0678 (2)
Cl20.21345 (4)0.00000.44545 (11)0.0907 (4)
Cl30.32036 (3)0.00000.34080 (8)0.0561 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0332 (15)0.098 (3)0.0501 (16)0.0000.0051 (12)0.000
C10.0284 (15)0.067 (2)0.0389 (15)0.0000.0054 (12)0.000
C20.0412 (19)0.132 (4)0.0404 (17)0.0000.0093 (15)0.000
C30.044 (2)0.120 (4)0.0323 (16)0.0000.0007 (14)0.000
C40.0519 (15)0.091 (2)0.0671 (16)−0.0051 (16)−0.0075 (12)−0.0215 (16)
C50.0502 (15)0.070 (2)0.0668 (15)−0.0193 (14)−0.0016 (12)0.0114 (14)
C60.0507 (14)0.0539 (17)0.0582 (14)0.0007 (12)−0.0012 (11)0.0010 (12)
C70.0373 (19)0.120 (4)0.0495 (19)0.0000.0107 (15)0.000
N20.0418 (18)0.133 (4)0.092 (3)0.0000.0173 (17)0.000
C80.0323 (16)0.061 (2)0.0527 (18)0.0000.0119 (14)0.000
C90.070 (2)0.046 (2)0.0535 (18)0.0000.0352 (17)0.000
C100.074 (3)0.091 (3)0.0362 (17)0.0000.0097 (17)0.000
C110.0753 (19)0.097 (3)0.0668 (17)0.0301 (19)0.0144 (14)0.0262 (17)
C120.0609 (16)0.067 (2)0.0719 (16)0.0209 (15)0.0250 (13)−0.0030 (14)
C130.0659 (16)0.0614 (19)0.0603 (14)−0.0134 (14)0.0253 (12)−0.0185 (13)
C140.047 (2)0.093 (3)0.068 (2)0.0000.0234 (18)0.000
Co10.0436 (3)0.0467 (3)0.0547 (3)0.0000.0057 (2)0.000
Cl10.0664 (4)0.0531 (4)0.0775 (4)0.0119 (3)0.0051 (3)0.0092 (3)
Cl20.0614 (6)0.1401 (12)0.0780 (7)0.0000.0311 (5)0.000
Cl30.0433 (5)0.0660 (6)0.0573 (5)0.0000.0090 (4)0.000

Geometric parameters (Å, °)

N1—C11.505 (4)N2—H2D0.8900
N1—H1A0.8900N2—H2E0.8900
N1—H1B0.8900C8—C131.515 (3)
N1—H1C0.8900C8—C13i1.515 (3)
C1—C6i1.509 (3)C8—C91.520 (4)
C1—C61.509 (3)C9—C101.506 (5)
C1—C21.530 (4)C9—H9A0.9700
C2—C31.530 (5)C9—H9B0.9700
C2—H2A0.9700C10—C111.517 (4)
C2—H2B0.9700C10—C11i1.517 (4)
C3—C4i1.516 (4)C10—H100.9800
C3—C41.516 (4)C11—C121.531 (4)
C3—H30.9800C11—H11A0.9700
C4—C51.528 (4)C11—H11B0.9700
C4—H4A0.9700C12—C141.518 (4)
C4—H4B0.9700C12—C131.520 (4)
C5—C71.504 (4)C12—H12A0.9800
C5—C61.537 (3)C13—H13A0.9700
C5—H50.9800C13—H13B0.9700
C6—H6A0.9700C14—C12i1.518 (4)
C6—H6B0.9700C14—H14A0.9700
C7—C5i1.504 (4)C14—H14B0.9700
C7—H7A0.9700Co1—Cl22.2313 (11)
C7—H7B0.9700Co1—Cl32.2567 (9)
N2—C81.510 (4)Co1—Cl12.2738 (7)
N2—H2C0.8900Co1—Cl1ii2.2738 (7)
C1—N1—H1A109.5C8—N2—H2E109.5
C1—N1—H1B109.5H2C—N2—H2E109.5
H1A—N1—H1B109.5H2D—N2—H2E109.5
C1—N1—H1C109.5N2—C8—C13108.41 (19)
H1A—N1—H1C109.5N2—C8—C13i108.41 (19)
H1B—N1—H1C109.5C13—C8—C13i109.6 (3)
N1—C1—C6i108.50 (17)N2—C8—C9109.3 (3)
N1—C1—C6108.50 (17)C13—C8—C9110.53 (19)
C6i—C1—C6110.3 (3)C13i—C8—C9110.53 (19)
N1—C1—C2109.7 (2)C10—C9—C8108.4 (3)
C6i—C1—C2109.94 (17)C10—C9—H9A110.0
C6—C1—C2109.94 (17)C8—C9—H9A110.0
C1—C2—C3108.5 (3)C10—C9—H9B110.0
C1—C2—H2A110.0C8—C9—H9B110.0
C3—C2—H2A110.0H9A—C9—H9B108.4
C1—C2—H2B110.0C9—C10—C11109.4 (2)
C3—C2—H2B110.0C9—C10—C11i109.4 (2)
H2A—C2—H2B108.4C11—C10—C11i110.3 (4)
C4i—C3—C4110.0 (3)C9—C10—H10109.2
C4i—C3—C2109.49 (19)C11—C10—H10109.2
C4—C3—C2109.49 (19)C11i—C10—H10109.2
C4i—C3—H3109.3C10—C11—C12109.4 (2)
C4—C3—H3109.3C10—C11—H11A109.8
C2—C3—H3109.3C12—C11—H11A109.8
C3—C4—C5109.2 (2)C10—C11—H11B109.8
C3—C4—H4A109.8C12—C11—H11B109.8
C5—C4—H4A109.8H11A—C11—H11B108.2
C3—C4—H4B109.8C14—C12—C13109.4 (3)
C5—C4—H4B109.8C14—C12—C11110.3 (3)
H4A—C4—H4B108.3C13—C12—C11108.6 (2)
C7—C5—C4109.8 (3)C14—C12—H12A109.5
C7—C5—C6109.7 (2)C13—C12—H12A109.5
C4—C5—C6109.0 (2)C11—C12—H12A109.5
C7—C5—H5109.4C8—C13—C12108.7 (2)
C4—C5—H5109.4C8—C13—H13A109.9
C6—C5—H5109.4C12—C13—H13A109.9
C1—C6—C5108.7 (2)C8—C13—H13B109.9
C1—C6—H6A109.9C12—C13—H13B109.9
C5—C6—H6A109.9H13A—C13—H13B108.3
C1—C6—H6B109.9C12i—C14—C12109.3 (3)
C5—C6—H6B109.9C12i—C14—H14A109.8
H6A—C6—H6B108.3C12—C14—H14A109.8
C5—C7—C5i109.9 (3)C12i—C14—H14B109.8
C5—C7—H7A109.7C12—C14—H14B109.8
C5i—C7—H7A109.7H14A—C14—H14B108.3
C5—C7—H7B109.7Cl2—Co1—Cl3112.11 (4)
C5i—C7—H7B109.7Cl2—Co1—Cl1111.30 (3)
H7A—C7—H7B108.2Cl3—Co1—Cl1108.75 (3)
C8—N2—H2C109.5Cl2—Co1—Cl1ii111.30 (3)
C8—N2—H2D109.5Cl3—Co1—Cl1ii108.74 (3)
H2C—N2—H2D109.5Cl1—Co1—Cl1ii104.31 (4)

Symmetry codes: (i) x, −y+1, z; (ii) x, −y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2E···Cl1iii0.892.723.437 (3)139
N2—H2E···Cl1iii0.892.723.437 (3)139
N2—H2D···Cl10.892.433.218 (3)147
N2—H2C···Cl1i0.892.433.218 (3)148
N1—H1C···Cl1i0.892.583.366 (2)147
N1—H1B···Cl3iv0.892.463.322 (3)164
N1—H1A···Cl10.892.583.366 (2)147

Symmetry codes: (iii) −x+1/2, y+1/2, −z; (i) x, −y+1, z; (iv) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HJ2005).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Barbour, L. J., MacGillvray, L. R. & Atwood, J. L. (1996). Supramol. Chem.7, 167–169.
  • Bruker (2006). APEX2 (Version 1.2A) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Geiser, U., Willett, R. D. & Gaura, R. M. (1984). Acta Cryst. C40, 1346–1349.
  • Gillon, A. L., Lewis, G. R., Orpen, A. G., Rotter, S., Starbuck, J., Wang, X.-M., Rodriguez-Martin, Y. & Ruiz-Perez, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3897–3905.
  • Guo, N., Lin, Y.-H., Zeng, G.-F. & Xi, S.-Q. (1992). Acta Cryst. C48, 542–543.
  • Haddad, S., Vji, A. & Willett, R. D. (2003). J. Chem. Crystallogr.33, 245–251.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography