PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o374.
Published online 2008 January 4. doi:  10.1107/S1600536807062149
PMCID: PMC2960248

4-(5-Bromo-2-hydroxy­benzyl­idene­amino)-3-methyl-1H-1,2,4-triazole-5(4H)-thione

Abstract

In the title compound, C10H9BrN4OS, the triazole ring forms a dihedral angle of 72.05 (14)° with the benzene ring. The conformation of the mol­ecule is stabilized by intra­molecular O—H(...)·N hydrogen bonding. The crystal packing is determined by inter­molecular N—H(...)S inter­actions, a short Br(...)S contact of 3.4464 (13) Å and π–π stacking of the triazole rings and of the benzene rings (centroid–centroid distances of 3.4109 and 3.569 Å, respectively).

Related literature

For related literature, see: Allen et al. (1987 [triangle]); Awad et al. (1991 [triangle]); Eweiss et al. (1986 [triangle]); Ji et al. (2002 [triangle]); Mohan (1983 [triangle]); Xu et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o374-scheme1.jpg

Experimental

Crystal data

  • C10H9BrN4OS
  • M r = 313.18
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o374-efi1.jpg
  • a = 6.9780 (8) Å
  • b = 7.1529 (8) Å
  • c = 12.3119 (14) Å
  • α = 83.561 (2)°
  • β = 88.820 (2)°
  • γ = 79.987 (2)°
  • V = 601.35 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.58 mm−1
  • T = 293 (2) K
  • 0.30 × 0.28 × 0.26 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (Blessing; 1995 [triangle]) T min = 0.404, T max = 0.519 (expected range = 0.307–0.394)
  • 4340 measured reflections
  • 2560 independent reflections
  • 1977 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.111
  • S = 1.10
  • 2560 reflections
  • 161 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2001 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062149/gk2112sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062149/gk2112Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Xianggao Meng for assistance with refinement of the crystal structure.

supplementary crystallographic information

Comment

Recently, compounds containing 1H-1,2,4-triazole group have attracted much interest because compounds containing this ring system are well known as efficient fungicides in pesticides and they exhibit good plant-growth regulatory activity for a wide variety of crops (Xu et al., 2002). In addition, amine- and thione-substituted triazoles have been studied as anti-inflamatory and antimicrobial agents (Eweiss et al., 1986; Awad et al., 1991). In a search for new triazole compounds with better biological activity, the title compound, (I), was synthesized and we report here its crystal structure.

The molecule of (I) exists in the thione tautomeric form, with the S==C distance of 1.681 (4) Å, which indicates a substantial double-bond character (Allen et al., 1987). The dihedral angle between the thione-substituted triazole ring and the benzene ring is 72.05 (14)°. The crystal packing is determined by intermolecular N–H···S interaction (Table 1), short Br···S contact of 3.4464 (13) Å and π-π stacking of the triazole rings (centroid-to-centrod distance of 3.410 Å) and π-π stacking of the benzene rings (centroid-to-centrod distance of 3.569 Å).

Experimental

4-Amino-5-methyl-1,2,4-triazole-3-thione (0.02 mol in 15 ml e thanol), synthesized according to a reported method (Mohan, 1983), was added to a solution of 5-bromosalicylaldehyde (0.02 mol in 20 ml). Then several drops of concentrated sulfuric acid were added to the solution, which was then refluxed for 1 h. The mixture was filtered and crystallized from ethanol to afford the title compound (I). Yellow plates of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement

The N– and O-bound H atoms were located in difference maps and refined with distance restraints [N–H = 0.86 (2) Å, O–H = 0.82 (2) Å] and the constraints for Uiso(H) = 1.5Ueq(N, O).

The C-bound H atoms were geometrically placed in idealized positions [C–H = 0.96 Å (methyl), 0.96 Å (aromatic), 0.96 Å (methine)]. Isotropic displacement parameters of H atoms were: Uiso(H)=1.5Ueq(C, methyl), Uiso(H) = 1.2Ueq(C, aromatic and methine).

Figures

Fig. 1.
View of the molecular structure of (I), showing 50% probability displacement ellipsoids for the non-hydrogen atoms.
Fig. 2.
Part of the crystal structure of (I) showing the formation of the two-dimensional network. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H9BrN4OSZ = 2
Mr = 313.18F000 = 312
Triclinic, P1Dx = 1.730 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.9780 (8) ÅCell parameters from 1728 reflections
b = 7.1529 (8) Åθ = 2.9–26.2º
c = 12.3119 (14) ŵ = 3.58 mm1
α = 83.561 (2)ºT = 293 (2) K
β = 88.820 (2)ºPlate, yellow
γ = 79.987 (2)º0.30 × 0.28 × 0.26 mm
V = 601.35 (12) Å3

Data collection

Bruker SMART CCD diffractometer2560 independent reflections
Radiation source: fine-focus sealed tube1977 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.038
T = 293(2) Kθmax = 27.0º
ω scansθmin = 1.7º
Absorption correction: multi-scan(Blessing; 1995)h = −8→8
Tmin = 0.404, Tmax = 0.519k = −9→8
4340 measured reflectionsl = −13→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111  w = 1/[σ2(Fo2) + (0.0416P)2 + 0.455P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2560 reflectionsΔρmax = 0.42 e Å3
161 parametersΔρmin = −0.58 e Å3
2 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.79546 (7)0.36351 (7)0.64076 (4)0.05088 (18)
C10.2803 (6)0.3219 (6)0.0688 (3)0.0386 (9)
C20.5585 (6)0.2362 (6)−0.0218 (3)0.0383 (9)
C30.7615 (6)0.1524 (7)−0.0409 (4)0.0500 (11)
H3A0.78320.1481−0.11780.075*
H3B0.78860.0253−0.00380.075*
H3C0.84570.2290−0.01340.075*
C40.5834 (6)0.2340 (6)0.2504 (3)0.0387 (9)
H40.55140.36630.23710.046*
C50.6609 (5)0.1469 (6)0.3552 (3)0.0350 (9)
C60.6983 (5)−0.0480 (6)0.3857 (3)0.0377 (9)
C70.7585 (6)−0.1188 (6)0.4911 (3)0.0415 (10)
H70.7807−0.25000.51140.050*
C80.7855 (6)0.0030 (6)0.5659 (3)0.0422 (10)
H80.8259−0.04560.63650.051*
C90.7521 (5)0.2008 (6)0.5355 (3)0.0356 (9)
C100.6892 (6)0.2752 (6)0.4322 (3)0.0384 (9)
H100.66540.40650.41260.046*
N10.4330 (5)0.3251 (5)−0.0963 (3)0.0419 (8)
N20.2652 (5)0.3746 (5)−0.0387 (3)0.0372 (8)
N30.4714 (5)0.2332 (4)0.0799 (3)0.0355 (8)
N40.5586 (5)0.1292 (5)0.1755 (3)0.0398 (8)
O10.6727 (5)−0.1790 (4)0.3183 (3)0.0500 (8)
S10.10932 (16)0.35060 (17)0.16652 (9)0.0457 (3)
H20.161 (5)0.440 (6)−0.069 (4)0.069*
H10.640 (8)−0.123 (7)0.258 (2)0.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0587 (3)0.0552 (3)0.0373 (3)−0.0031 (2)−0.0109 (2)−0.0079 (2)
C10.044 (2)0.037 (2)0.035 (2)−0.0072 (18)−0.0095 (18)−0.0040 (18)
C20.043 (2)0.033 (2)0.041 (2)−0.0098 (18)−0.0050 (18)−0.0098 (18)
C30.047 (3)0.047 (3)0.055 (3)−0.004 (2)−0.003 (2)−0.005 (2)
C40.038 (2)0.040 (2)0.036 (2)−0.0030 (18)−0.0052 (17)−0.0012 (18)
C50.0302 (19)0.041 (2)0.034 (2)−0.0083 (17)−0.0078 (16)0.0013 (18)
C60.0279 (19)0.033 (2)0.047 (2)0.0047 (16)−0.0057 (17)0.0024 (19)
C70.039 (2)0.036 (2)0.045 (2)−0.0042 (18)−0.0069 (19)0.0075 (19)
C80.035 (2)0.050 (3)0.036 (2)−0.0016 (19)−0.0069 (17)0.010 (2)
C90.0286 (19)0.040 (2)0.038 (2)−0.0015 (16)−0.0091 (16)−0.0059 (18)
C100.038 (2)0.033 (2)0.039 (2)0.0024 (17)−0.0083 (18)0.0067 (18)
N10.046 (2)0.046 (2)0.0337 (18)−0.0062 (17)−0.0059 (16)−0.0034 (16)
N20.0391 (19)0.0380 (19)0.0325 (18)−0.0021 (15)−0.0100 (15)−0.0007 (15)
N30.0396 (18)0.0323 (18)0.0345 (18)−0.0054 (15)−0.0119 (14)−0.0024 (14)
N40.0440 (19)0.0285 (17)0.0389 (19)0.0097 (14)−0.0155 (15)0.0086 (15)
O10.062 (2)0.0376 (17)0.0481 (19)−0.0034 (15)−0.0136 (16)−0.0005 (15)
S10.0458 (6)0.0541 (7)0.0325 (6)0.0015 (5)−0.0055 (4)0.0006 (5)

Geometric parameters (Å, °)

Br1—C91.898 (4)C5—C101.431 (5)
C1—N21.336 (5)C6—O11.356 (5)
C1—N31.375 (5)C6—C71.385 (6)
C1—S11.681 (4)C7—C81.373 (6)
C2—N11.312 (5)C7—H70.9300
C2—N31.381 (5)C8—C91.402 (6)
C2—C31.463 (6)C8—H80.9300
C3—H3A0.9600C9—C101.372 (5)
C3—H3B0.9600C10—H100.9300
C3—H3C0.9600N1—N21.370 (5)
C4—N41.285 (5)N2—H20.862 (19)
C4—C51.440 (5)N3—N41.409 (4)
C4—H40.9300O1—H10.821 (19)
C5—C61.383 (5)
N2—C1—N3102.6 (3)C8—C7—C6120.5 (4)
N2—C1—S1129.2 (3)C8—C7—H7119.7
N3—C1—S1128.2 (3)C6—C7—H7119.7
N1—C2—N3109.8 (4)C7—C8—C9119.9 (4)
N1—C2—C3126.3 (4)C7—C8—H8120.1
N3—C2—C3123.9 (4)C9—C8—H8120.1
C2—C3—H3A109.5C10—C9—C8120.8 (4)
C2—C3—H3B109.5C10—C9—Br1120.7 (3)
H3A—C3—H3B109.5C8—C9—Br1118.4 (3)
C2—C3—H3C109.5C9—C10—C5118.8 (4)
H3A—C3—H3C109.5C9—C10—H10120.6
H3B—C3—H3C109.5C5—C10—H10120.6
N4—C4—C5120.0 (4)C2—N1—N2104.2 (3)
N4—C4—H4120.0C1—N2—N1114.4 (3)
C5—C4—H4120.0C1—N2—H2123 (3)
C6—C5—C10119.7 (4)N1—N2—H2122 (3)
C6—C5—C4124.2 (4)C1—N3—C2109.0 (3)
C10—C5—C4116.0 (4)C1—N3—N4126.2 (3)
O1—C6—C5123.4 (4)C2—N3—N4124.1 (3)
O1—C6—C7116.3 (4)C4—N4—N3113.7 (3)
C5—C6—C7120.3 (4)C6—O1—H1109 (4)
N4—C4—C5—C6−5.4 (6)C3—C2—N1—N2179.5 (4)
N4—C4—C5—C10178.1 (4)N3—C1—N2—N10.2 (4)
C10—C5—C6—O1179.1 (3)S1—C1—N2—N1−178.5 (3)
C4—C5—C6—O12.6 (6)C2—N1—N2—C10.5 (4)
C10—C5—C6—C71.5 (6)N2—C1—N3—C2−0.7 (4)
C4—C5—C6—C7−174.9 (4)S1—C1—N3—C2178.0 (3)
O1—C6—C7—C8−179.0 (4)N2—C1—N3—N4−171.4 (3)
C5—C6—C7—C8−1.3 (6)S1—C1—N3—N47.3 (6)
C6—C7—C8—C90.0 (6)N1—C2—N3—C11.1 (4)
C7—C8—C9—C101.2 (6)C3—C2—N3—C1−179.3 (4)
C7—C8—C9—Br1−179.0 (3)N1—C2—N3—N4172.1 (3)
C8—C9—C10—C5−0.9 (6)C3—C2—N3—N4−8.4 (6)
Br1—C9—C10—C5179.2 (3)C5—C4—N4—N3176.5 (3)
C6—C5—C10—C9−0.4 (6)C1—N3—N4—C4−71.7 (5)
C4—C5—C10—C9176.3 (3)C2—N3—N4—C4118.9 (4)
N3—C2—N1—N2−0.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862 (19)2.44 (2)3.295 (3)173 (5)
O1—H1···N40.821 (19)1.97 (4)2.676 (4)144 (5)
O1—H1···N1ii0.821 (19)2.69 (5)3.178 (5)120 (5)

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2112).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Awad, I., Abdel-Rahman, A. & Bakite, E. (1991). J. Chem. Technol. Biotechnol.51, 483–486.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bruker (2001). SMART, SAINT, SADABS and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Eweiss, N., Bahajaj, A. & Elsherbini, E. (1986). J. Heterocycl. Chem.23, 1451–1458.
  • Ji, B.-M., Du, C.-X., Zhu, Y. & Wang, Y. (2002). Chin. J. Struct. Chem.21, 252–255.
  • Mohan, J. A. G. (1983). Indian J. Chem. Sect. B, 22, 270–271.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Xu, L. Z., Zhang, S. S., Li, H. J. & Jiao, K. (2002). J. Chem. Res. Chin. Univ.18, 284–286.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography