PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m323.
Published online 2008 January 9. doi:  10.1107/S1600536807068663
PMCID: PMC2960247

Di-μ-bromido-bis­({bis­[2-(2-pyrid­yl)eth­yl]amine}copper(II)) bis­(perchlorate)

Abstract

Each Cu atom in the dinuclear centrosymmetric title complex, [Cu2Br2(C14H17N3)2](ClO4)2, is ligated in a distorted square-pyramidal geometry (τ = 0.31) by a tridentate bis­[2-(2-pyrid­yl)eth­yl]amine ligand, and by two bridging Br atoms. In addition, the dinuclear species is stabilized by two hydrogen-bonded perchlorate anions.

Related literature

For related literature, see: Chakrabarty et al. (2004 [triangle]); Helis et al. (1977 [triangle]); Marsh et al. (1983 [triangle]); Udugala-Ganehenege, et al. (2001 [triangle]); Xu et al. (2000 [triangle]). For the calculation of the coordination geometry, see: Addison et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m323-scheme1.jpg

Experimental

Crystal data

  • [Cu2Br2(C14H17N3)2](ClO4)2
  • M r = 940.41
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m323-efi1.jpg
  • a = 6.8002 (13) Å
  • b = 11.413 (2) Å
  • c = 12.668 (2) Å
  • α = 67.212 (8)°
  • β = 77.019 (13)°
  • γ = 87.033 (15)°
  • V = 882.6 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 3.67 mm−1
  • T = 293 (2) K
  • 0.42 × 0.21 × 0.18 mm

Data collection

  • Bruker P4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.569, T max = 0.948 (expected range = 0.310–0.516)
  • 3951 measured reflections
  • 3936 independent reflections
  • 2960 reflections with I > 2σ˘I)
  • R int = 0.018
  • 3 standard reflections every 97 reflections intensity decay: <2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.095
  • S = 1.04
  • 3936 reflections
  • 255 parameters
  • 50 restraints
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: XSCANS (Bruker, 1997 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Bruker, 2000 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068663/tk2238sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068663/tk2238Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the DoD for funds to upgrade the diffractometer.

supplementary crystallographic information

Comment

Complex (I), Fig. 1, contains two Cu(II) atoms, each within a distorted square-pyramidal geometry (τ = 0.31, Addison et al., 1984) where one amine-N atom, two pyridine-N atoms and one Br atom constitute the basal plane with Cu—Npyridine = 2.012 (3) and 2.000 (3) Å, Cu—Namine = 2.044 (3) Å and Cu—Br = 2.4542 (7) Å. The axial position is occupied by the second Br atom with Cu—Br = 2.8908 (8) Å, the longer distance being consistent with a Jahn-Teller elongation. Pairs of these square-pyramidal Cu complexes form dimers about a center of inversion, being mutually bridged by the Br atoms. In addition, the dinuclear complex is stabilized by two N—H···O hydrogen bonded ClO4- anions (Table 1) and the crystal packing is consolidated by a variety of hydrogen bonding interactions (Fig. 2 and Table 1).

Experimental

The title complex was synthesized by reacting Cu(ClO4)2.6H2O (0.37 g, 1 mmol), bis[2-(2-pyridyl)ethyl]amine (0.227 g, 1 mmol) and potassium bromide (0.0297 g, 0.25 mmol) in acetonitrile (15 ml) for 4 h at room temperature. X-ray quality crystals were grown by slow diffusion of diethyl ether into an acetonitrile solution of the complex.

Refinement

The perchlorate anion is disordered over two conformations with occupancy factors, from refinement, of 0.543 (17) and 0.457 (17). It was constrained to adopt a tetrahedral geometry. The H atoms were idealized with N—H = 0.91 Å and C—H = 0.93 (aromatic C—H), 0.96 (CH3), and 0.97 (CH2) Å, and with Uiso(H) = 1.2Ueq(C) (1.5Ueq(C) for the CH3).

Figures

Fig. 1.
Complex (I) showing numbering scheme and displacement ellipsoids at the 20% probabilty level.
Fig. 2.
The packing arrangement viewed down the a axis showing the intramolecular N—H···O and intermolecular C—H···O interactions (dashed bonds).

Crystal data

[Cu2Br2(C14H17N3)2](ClO4)2Z = 1
Mr = 940.41F000 = 470
Triclinic, P1Dx = 1.769 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.8002 (13) ÅCell parameters from 49 reflections
b = 11.413 (2) Åθ = 2.1–12.5º
c = 12.668 (2) ŵ = 3.68 mm1
α = 67.212 (8)ºT = 293 (2) K
β = 77.019 (13)ºThick needle, blue
γ = 87.033 (15)º0.42 × 0.21 × 0.18 mm
V = 882.6 (3) Å3

Data collection

Bruker P4 diffractometerRint = 0.018
Radiation source: fine-focus sealed tubeθmax = 27.5º
Monochromator: graphiteθmin = 2.1º
T = 293(2) Kh = −8→0
ω scansk = −13→13
Absorption correction: ψ scan(North et al., 1968)l = −16→16
Tmin = 0.569, Tmax = 0.9483 standard reflections
3951 measured reflections every 97 reflections
3936 independent reflections intensity decay: <2%
2960 reflections with I > 2σ˘I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.095  w = 1/[σ2(Fo2) + (0.0336P)2 + 0.6582P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3936 reflectionsΔρmax = 0.50 e Å3
255 parametersΔρmin = −0.36 e Å3
50 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu0.60810 (7)0.98360 (4)0.63720 (4)0.03731 (14)
Br0.76316 (6)0.97756 (4)0.44483 (3)0.03934 (12)
Cl0.19832 (18)1.27274 (11)0.86706 (12)0.0588 (3)
O11A0.062 (3)1.3663 (19)0.856 (2)0.149 (8)0.543 (17)
O12A0.117 (3)1.1516 (12)0.9388 (14)0.094 (5)0.543 (17)
O13A0.372 (2)1.2975 (11)0.8979 (15)0.110 (4)0.543 (17)
O14A0.2714 (18)1.2648 (13)0.7496 (8)0.101 (4)0.543 (17)
O11B0.010 (2)1.332 (2)0.8582 (19)0.100 (5)0.457 (17)
O12B0.346 (3)1.3175 (18)0.7719 (15)0.155 (7)0.457 (17)
O13B0.155 (3)1.1399 (11)0.9066 (16)0.072 (4)0.457 (17)
O14B0.256 (3)1.2875 (13)0.9664 (14)0.110 (5)0.457 (17)
N0.4740 (5)0.9948 (3)0.7943 (3)0.0424 (8)
H0A0.39201.06190.77550.051*
N1A0.6270 (5)0.7958 (3)0.7201 (3)0.0391 (7)
N1B0.6733 (5)1.1709 (3)0.5811 (3)0.0380 (7)
C1A0.8000 (7)0.7390 (4)0.6945 (4)0.0495 (10)
H1AA0.90930.78910.63980.059*
C2A0.8210 (9)0.6113 (5)0.7456 (5)0.0666 (14)
H2AA0.94330.57510.72790.080*
C3A0.6575 (9)0.5370 (5)0.8238 (5)0.0730 (16)
H3AA0.66620.44920.85720.088*
C4A0.4811 (8)0.5932 (4)0.8524 (4)0.0581 (12)
H4AA0.37020.54360.90580.070*
C5A0.4694 (6)0.7240 (4)0.8012 (3)0.0412 (9)
C6A0.2871 (6)0.7913 (4)0.8353 (4)0.0487 (10)
H6AA0.18590.72930.89420.058*
H6AB0.23040.83590.76720.058*
C7A0.3377 (8)0.8864 (4)0.8842 (4)0.0609 (13)
H7AA0.21340.91980.91440.073*
H7AB0.40220.84240.94920.073*
C1B0.6256 (7)1.2605 (4)0.4855 (4)0.0488 (10)
H1BA0.56191.23500.43970.059*
C2B0.6661 (8)1.3874 (4)0.4520 (5)0.0609 (13)
H2BA0.63391.44700.38420.073*
C3B0.7563 (8)1.4244 (5)0.5220 (6)0.0681 (15)
H3BA0.78191.51030.50310.082*
C4B0.8084 (7)1.3342 (5)0.6198 (5)0.0623 (14)
H4BA0.87251.35840.66620.075*
C5B0.7646 (6)1.2071 (4)0.6483 (4)0.0435 (10)
C6B0.8117 (7)1.1013 (5)0.7541 (4)0.0544 (12)
H6BB0.89241.13590.79020.065*
H6BC0.89171.04010.72900.065*
C7B0.6244 (7)1.0334 (5)0.8450 (4)0.0546 (12)
H7BB0.66420.95820.90430.065*
H7BC0.56131.08890.88350.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0479 (3)0.0350 (3)0.0253 (2)−0.0001 (2)−0.0020 (2)−0.01082 (19)
Br0.0328 (2)0.0541 (3)0.0300 (2)0.00276 (17)−0.00239 (15)−0.01773 (18)
Cl0.0517 (7)0.0459 (6)0.0707 (8)0.0054 (5)−0.0143 (6)−0.0138 (6)
O11A0.161 (13)0.099 (11)0.191 (11)0.081 (10)−0.070 (10)−0.051 (9)
O12A0.097 (8)0.071 (7)0.085 (8)−0.005 (6)0.011 (6)−0.013 (5)
O13A0.106 (8)0.093 (6)0.145 (10)−0.012 (6)−0.050 (7)−0.047 (7)
O14A0.080 (7)0.125 (9)0.080 (6)0.007 (6)0.004 (5)−0.035 (5)
O11B0.098 (8)0.102 (11)0.128 (9)0.067 (8)−0.054 (7)−0.065 (8)
O12B0.120 (10)0.146 (11)0.119 (10)−0.020 (8)0.044 (9)0.000 (9)
O13B0.066 (7)0.050 (5)0.109 (11)0.007 (5)−0.025 (7)−0.037 (6)
O14B0.146 (13)0.105 (8)0.104 (10)−0.010 (9)−0.058 (9)−0.048 (8)
N0.049 (2)0.0437 (19)0.0311 (17)0.0068 (16)−0.0029 (15)−0.0148 (15)
N1A0.047 (2)0.0372 (17)0.0296 (16)0.0006 (15)−0.0069 (14)−0.0102 (14)
N1B0.0389 (18)0.0410 (18)0.0323 (17)−0.0025 (14)−0.0032 (14)−0.0143 (14)
C1A0.049 (3)0.051 (3)0.044 (2)0.007 (2)−0.008 (2)−0.016 (2)
C2A0.074 (4)0.052 (3)0.062 (3)0.018 (3)−0.007 (3)−0.015 (3)
C3A0.097 (4)0.037 (3)0.069 (3)0.009 (3)−0.009 (3)−0.010 (2)
C4A0.071 (3)0.043 (3)0.045 (3)−0.006 (2)0.001 (2)−0.007 (2)
C5A0.050 (2)0.042 (2)0.0287 (19)−0.0002 (18)−0.0094 (17)−0.0101 (17)
C6A0.044 (2)0.046 (2)0.041 (2)−0.0035 (19)−0.0038 (19)−0.0031 (19)
C7A0.074 (3)0.052 (3)0.042 (2)0.002 (2)0.012 (2)−0.016 (2)
C1B0.055 (3)0.046 (2)0.045 (2)−0.002 (2)−0.012 (2)−0.016 (2)
C2B0.059 (3)0.044 (3)0.063 (3)−0.003 (2)−0.004 (2)−0.007 (2)
C3B0.058 (3)0.043 (3)0.097 (4)−0.011 (2)0.006 (3)−0.032 (3)
C4B0.049 (3)0.073 (3)0.079 (4)−0.015 (2)−0.004 (3)−0.047 (3)
C5B0.037 (2)0.057 (3)0.042 (2)−0.0043 (19)−0.0035 (18)−0.026 (2)
C6B0.045 (2)0.083 (3)0.045 (3)0.012 (2)−0.015 (2)−0.033 (2)
C7B0.060 (3)0.074 (3)0.032 (2)0.011 (2)−0.014 (2)−0.021 (2)

Geometric parameters (Å, °)

Cu—N1A2.000 (3)C3A—C4A1.373 (7)
Cu—N1B2.012 (3)C3A—H3AA0.9300
Cu—N2.044 (3)C4A—C5A1.385 (6)
Cu—Br2.4542 (7)C4A—H4AA0.9300
Cu—Bri2.8908 (8)C5A—C6A1.494 (6)
Br—Cui2.8908 (8)C6A—C7A1.528 (7)
Cl—O12B1.326 (11)C6A—H6AA0.9700
Cl—O11A1.361 (11)C6A—H6AB0.9700
Cl—O12A1.388 (11)C7A—H7AA0.9700
Cl—O13A1.397 (9)C7A—H7AB0.9700
Cl—O13B1.424 (11)C1B—C2B1.366 (6)
Cl—O11B1.424 (11)C1B—H1BA0.9300
Cl—O14B1.469 (10)C2B—C3B1.379 (8)
Cl—O14A1.495 (9)C2B—H2BA0.9300
N—C7B1.488 (6)C3B—C4B1.375 (8)
N—C7A1.496 (5)C3B—H3BA0.9300
N—H0A0.9100C4B—C5B1.384 (6)
N1A—C5A1.349 (5)C4B—H4BA0.9300
N1A—C1A1.350 (5)C5B—C6B1.502 (6)
N1B—C1B1.342 (5)C6B—C7B1.517 (6)
N1B—C5B1.349 (5)C6B—H6BB0.9700
C1A—C2A1.361 (6)C6B—H6BC0.9700
C1A—H1AA0.9300C7B—H7BB0.9700
C2A—C3A1.374 (7)C7B—H7BC0.9700
C2A—H2AA0.9300
N1A—Cu—N1B159.15 (14)C5A—C4A—H4AA120.2
N1A—Cu—N89.40 (13)N1A—C5A—C4A120.4 (4)
N1B—Cu—N85.66 (13)N1A—C5A—C6A117.6 (4)
N1A—Cu—Br92.56 (9)C4A—C5A—C6A122.0 (4)
N1B—Cu—Br92.79 (9)C5A—C6A—C7A111.7 (4)
N—Cu—Br177.86 (10)C5A—C6A—H6AA109.3
N1A—Cu—Bri106.74 (10)C7A—C6A—H6AA109.3
N1B—Cu—Bri93.79 (10)C5A—C6A—H6AB109.3
N—Cu—Bri93.61 (10)C7A—C6A—H6AB109.3
Br—Cu—Bri85.00 (2)H6AA—C6A—H6AB107.9
Cu—Br—Cui95.00 (2)N—C7A—C6A112.9 (3)
O11A—Cl—O13A113.7 (9)N—C7A—H7AA109.0
O12A—Cl—O13A111.2 (9)C6A—C7A—H7AA109.0
O12B—Cl—O11B115.9 (11)N—C7A—H7AB109.0
O13B—Cl—O11B105.7 (9)C6A—C7A—H7AB109.0
O12B—Cl—O14B110.1 (9)H7AA—C7A—H7AB107.8
O13B—Cl—O14B104.4 (8)N1B—C1B—C2B123.3 (4)
O11B—Cl—O14B106.0 (9)N1B—C1B—H1BA118.4
O11A—Cl—O14A108.1 (10)C2B—C1B—H1BA118.4
O12A—Cl—O14A103.5 (7)C1B—C2B—C3B117.9 (5)
O13A—Cl—O14A105.2 (6)C1B—C2B—H2BA121.1
C7B—N—C7A112.0 (3)C3B—C2B—H2BA121.1
C7B—N—Cu110.9 (3)C4B—C3B—C2B119.9 (5)
C7A—N—Cu118.5 (3)C4B—C3B—H3BA120.0
C7B—N—H0A104.7C2B—C3B—H3BA120.0
C7A—N—H0A104.7C3B—C4B—C5B119.3 (5)
Cu—N—H0A104.7C3B—C4B—H4BA120.4
C5A—N1A—C1A119.0 (4)C5B—C4B—H4BA120.4
C5A—N1A—Cu121.3 (3)N1B—C5B—C4B120.9 (4)
C1A—N1A—Cu119.8 (3)N1B—C5B—C6B115.5 (4)
C1B—N1B—C5B118.7 (4)C4B—C5B—C6B123.6 (4)
C1B—N1B—Cu124.8 (3)C5B—C6B—C7B113.2 (4)
C5B—N1B—Cu116.4 (3)C5B—C6B—H6BB108.9
N1A—C1A—C2A122.7 (4)C7B—C6B—H6BB108.9
N1A—C1A—H1AA118.7C5B—C6B—H6BC108.9
C2A—C1A—H1AA118.7C7B—C6B—H6BC108.9
C1A—C2A—C3A118.5 (5)H6BB—C6B—H6BC107.8
C1A—C2A—H2AA120.7N—C7B—C6B113.2 (3)
C3A—C2A—H2AA120.7N—C7B—H7BB108.9
C4A—C3A—C2A119.7 (5)C6B—C7B—H7BB108.9
C4A—C3A—H3AA120.1N—C7B—H7BC108.9
C2A—C3A—H3AA120.1C6B—C7B—H7BC108.9
C3A—C4A—C5A119.6 (4)H7BB—C7B—H7BC107.7
C3A—C4A—H4AA120.2
N1A—Cu—Br—Cui106.59 (10)N1A—C1A—C2A—C3A1.8 (8)
N1B—Cu—Br—Cui−93.56 (10)C1A—C2A—C3A—C4A−2.8 (9)
N—Cu—Br—Cui−50 (3)C2A—C3A—C4A—C5A0.6 (8)
Bri—Cu—Br—Cui0.0C1A—N1A—C5A—C4A−3.7 (6)
N1A—Cu—N—C7B97.3 (3)Cu—N1A—C5A—C4A176.0 (3)
N1B—Cu—N—C7B−62.4 (3)C1A—N1A—C5A—C6A174.5 (4)
Br—Cu—N—C7B−106 (3)Cu—N1A—C5A—C6A−5.8 (5)
Bri—Cu—N—C7B−155.9 (3)C3A—C4A—C5A—N1A2.7 (7)
N1A—Cu—N—C7A−34.3 (3)C3A—C4A—C5A—C6A−175.4 (5)
N1B—Cu—N—C7A166.0 (3)N1A—C5A—C6A—C7A−58.6 (5)
Br—Cu—N—C7A122 (3)C4A—C5A—C6A—C7A119.6 (5)
Bri—Cu—N—C7A72.5 (3)C7B—N—C7A—C6A−142.0 (4)
N1B—Cu—N1A—C5A121.2 (4)Cu—N—C7A—C6A−10.9 (5)
N—Cu—N1A—C5A45.1 (3)C5A—C6A—C7A—N65.9 (5)
Br—Cu—N1A—C5A−134.1 (3)C5B—N1B—C1B—C2B0.4 (7)
Bri—Cu—N1A—C5A−48.5 (3)Cu—N1B—C1B—C2B177.7 (4)
N1B—Cu—N1A—C1A−59.1 (5)N1B—C1B—C2B—C3B−1.5 (7)
N—Cu—N1A—C1A−135.2 (3)C1B—C2B—C3B—C4B2.1 (8)
Br—Cu—N1A—C1A45.6 (3)C2B—C3B—C4B—C5B−1.7 (8)
Bri—Cu—N1A—C1A131.2 (3)C1B—N1B—C5B—C4B0.1 (6)
N1A—Cu—N1B—C1B157.2 (4)Cu—N1B—C5B—C4B−177.4 (3)
N—Cu—N1B—C1B−126.0 (3)C1B—N1B—C5B—C6B179.6 (4)
Br—Cu—N1B—C1B52.5 (3)Cu—N1B—C5B—C6B2.1 (4)
Bri—Cu—N1B—C1B−32.6 (3)C3B—C4B—C5B—N1B0.6 (7)
N1A—Cu—N1B—C5B−25.4 (5)C3B—C4B—C5B—C6B−178.9 (4)
N—Cu—N1B—C5B51.3 (3)N1B—C5B—C6B—C7B−66.2 (5)
Br—Cu—N1B—C5B−130.2 (3)C4B—C5B—C6B—C7B113.3 (5)
Bri—Cu—N1B—C5B144.7 (3)C7A—N—C7B—C6B156.6 (4)
C5A—N1A—C1A—C2A1.4 (7)Cu—N—C7B—C6B21.7 (5)
Cu—N1A—C1A—C2A−178.3 (4)C5B—C6B—C7B—N49.4 (5)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N—H0A···O14A0.912.343.205 (12)159
N—H0A···O13B0.912.443.089 (18)129
C6A—H6AB···Bri0.972.703.588 (4)153
C6B—H6BC···Brii0.972.893.706 (4)142
C6B—H6BB···O13Biii0.972.573.487 (18)158
C2A—H2AA···O11Aiv0.932.523.162 (14)126
C7A—H7AA···O12Av0.972.513.322 (16)141
C7A—H7AA···O13B0.972.493.179 (15)128
C3A—H3AA···O13Avi0.932.543.142 (12)122

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+2, −y+2, −z+1; (iii) x+1, y, z; (iv) x+1, y−1, z; (v) −x, −y+2, −z+2; (vi) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2238).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Bruker (1997). XSCANS Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2000). SHELXTL Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chakrabarty, S., Poddar, R. K., Poulsen, R. D., Thompson, A. L. & Howard, J. A. K. (2004). Acta Cryst. C60, m628–m630. [PubMed]
  • Helis, H. M., Goodman, W. H., Wilson, R. B., Morgan, J. A. & Hodgson, D. J. (1977). Inorg. Chem.16, 2412–2416.
  • Marsh, W. E., Patel, K. C., Hatfield, W. E. & Hodgson, D. J. (1983). Inorg. Chem.22, 511–515.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Udugala-Ganehenege, M. Y., Heeg, M. J., Hryhorczuk, L. M., Wenger, L. E. & Endicott, J. F. (2001). Inorg. Chem.40, 1614–1625. [PubMed]
  • Xu, Z., White, S., Thompson, L. K., Miller, D. O., Ohba, M., Okawa, H., Wilson, C. & Howard, J. A. K. (2000). J. Chem. Soc. Dalton Trans. pp.1751–1757.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography