PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m378.
Published online 2008 January 23. doi:  10.1107/S1600536808001244
PMCID: PMC2960246

Bis(dihydrogen norfloxacinium) tri-μ2-chlorido-bis­[trichloridobismuthate(III)] chloride dihydrate

Abstract

The title compound, {systematic name: (3-carb­oxy-1-ethyl-6-fluoro-7-piperazin-4-ium-1-yl-1H-quinolin-4-yl­idene)oxonium tri-μ2-chlorido-bis­[trichloridobismuthate(III)] chloride dihydrate], (C16H20FN3O3)2[Bi2Cl9]Cl·2H2O, is composed of [Bi2Cl9]3− anions lying on crystallographic twofold rotation axes, Cl anions also on twofold axes, C16H20FN3O3 2+ cations, and water mol­ecules. The BiIII coordination polyhedron is a distorted octa­hedron and two such octa­hedra share a triangular face to form the complex anion. There are three short terminal Bi—Cl bonds [2.5471 (6)–2.5781(5 Å] and three longer bridging bonds [2.8599 (5)–2.9984 (6) Å] in each octa­hedron. Anions, cations and water mol­ecules are linked by hydrogen bonds to form a three-dimensional network. There are also π–π stacking inter­actions between quinoline ring systems, with an inter­planar distance of 3.27 (1) Å.

Related literature

For the Cambridge Structural Database (Version 5.28) used to identify related structures, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m378-scheme1.jpg

Experimental

Crystal data

  • (C16H20FN3O3)2[Bi2Cl9]Cl·2H2O
  • M r = 1451.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m378-efi1.jpg
  • a = 13.9109 (12) Å
  • b = 22.7104 (19) Å
  • c = 14.5964 (12) Å
  • β = 92.798 (2)°
  • V = 4605.8 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 8.27 mm−1
  • T = 203 (2) K
  • 0.27 × 0.22 × 0.17 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: Gaussian (SADABS; Bruker, 2003 [triangle]) T min = 0.180, T max = 0.334
  • 16736 measured reflections
  • 6987 independent reflections
  • 6081 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.061
  • S = 1.06
  • 6987 reflections
  • 282 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.58 e Å−3
  • Δρmin = −0.84 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: publCIF (Version 1.9.0; Westrip, 2008 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808001244/cf2178sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001244/cf2178Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Norfloxacin (nfH) belongs to the second-generation quinolone antimicrobial agents. According to a search of the Cambridge Structural Database (CSD, Version 5.28; Allen, 2002), well determined relevant structures are those where norfloxacin acts as an anion, a singly protonated cation or a zwitterion. The present research deals with the synthesis and structure of a chlorido-bismuth complex with the doubly protonated cation of norfloxacin (nfH3)2+.

The asymmetric unit of the title compound, (I), contains one Bi atom, five chlorine atoms, one nfH3 cation and one H2O molecule. The Bi atoms are coordinated by six Cl atoms in a distorted octahedral geometry. Two Bi-centred octahedra are linked by triple Cl bridges to form a dinuclear [Bi2Cl9]3- complex (Fig. 1), which lies on a twofold rotation axis, with a Bi···Bi distance of 3.7851 (3) Å. In the Bi-centred octahedra there are three short terminal Bi—Cl bonds [2.5471 (6)–2.5781 (5) Å] and three longer bridging bonds [2.8599 (5)–2.9984(6] Å). These anions pack in columns parallel to the [101] direction.

The protonation of nfH32+ is realised on the carbonyl atom O3 and N3 of the piperazine ring (Fig. 2). The hydrogen atom H3 is linked by an intramolecular hydrogen bond with O1 of the carboxyl group. O2 and N3 in the cation act as hydrogen-bond donors, via H2, H3A and H3B.

Water molecules, uncoordinated chloride anions (Cl6) and nfH32+ cations are linked in zigzag chains by hydrogen bonds parallel to the [102] direction (Fig. 3). In the chain, the nfH32+ cations are pairwise parallel (as a result of inversion symmetry), and there exist also π–π interactions between quinoline ring systems, with an interplanar distance of 3.27 (1) Å.

The combination of the hydrogen bonds and π–π stacking generates a three-dimensional network (Fig. 4).

Experimental

Bi(OH)3 (0.052 g, 0.2 mmol) was reacted with nfH (0.066 g, 0.2 mmol) in an aqueous solution of HCl (21%, 20 ml). Yellow crystals were obtained after evaporation for 72 h at room temperature.

Refinement

H atoms (for H2O) were located in a difference map and refined with Uiso(H) = 1.5Ueq(O) and the O—H distances were restrained to be similar. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.94, 0.97 and 0.98 Å; N—H = 0.91 Å and O—H = 0.83 Å. All H atoms were refined with Uiso set to 1.2 or 1.5 times Ueq of the parent atom. The maximum peak and the deepest hole are located 0.77 Å and 1.33 Å from Bi, respectively.

Figures

Fig. 1.
A view of the dinuclear [Bi2Cl9]3- complex, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) -x, y, 1/2 - z.]
Fig. 2.
A view of the nfH32+ canion, with displacement ellipsoids drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line.
Fig. 3.
Fragment of the zigzag chain formed from water molecules, chloride anions and nfH32+ canions, with hydrogen bonds shown as dashed lines.
Fig. 4.
The crystal structure of the title compound viewed along the c axis. Dashed lines represent hydrogen bonds.

Crystal data

(C16H20FN3O3)2[Bi2Cl9]Cl·2H2OF000 = 2784
Mr = 1451.19Dx = 2.093 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
a = 13.9109 (12) ÅCell parameters from 951 reflections
b = 22.7104 (19) Åθ = 3.9–30.6º
c = 14.5964 (12) ŵ = 8.27 mm1
β = 92.798 (2)ºT = 203 (2) K
V = 4605.8 (7) Å3Prism, yellow
Z = 40.27 × 0.22 × 0.17 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer6987 independent reflections
Radiation source: fine-focus sealed tube6081 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.031
Detector resolution: 8.33 pixels mm-1θmax = 31.5º
T = 203(2) Kθmin = 3.6º
[var phi] and ω scansh = −20→15
Absorption correction: Gaussian(SADABS; Bruker, 2003)k = −31→32
Tmin = 0.180, Tmax = 0.334l = −20→14
16736 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061  w = 1/[σ2(Fo2) + (0.0269P)2 + 1.9407P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.012
6987 reflectionsΔρmax = 1.58 e Å3
282 parametersΔρmin = −0.84 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000362 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Bi10.125399 (5)0.231497 (3)0.205209 (5)0.01711 (2)
Cl10.00000.13708 (3)0.25000.02433 (15)
Cl20.06458 (4)0.26380 (2)0.38711 (4)0.02637 (11)
Cl30.16112 (4)0.18802 (2)0.04945 (3)0.02670 (11)
Cl40.27484 (4)0.18468 (3)0.28222 (4)0.03193 (13)
Cl50.20122 (4)0.33350 (2)0.18044 (4)0.03441 (13)
Cl60.50000.48180 (3)0.25000.0356 (2)
F10.75259 (8)0.46603 (5)0.43340 (9)0.0275 (3)
O11.25735 (10)0.45323 (6)0.28600 (10)0.0262 (3)
O21.32428 (11)0.54074 (6)0.32107 (12)0.0317 (4)
H21.37140.52590.29700.048*
O31.08058 (10)0.43447 (6)0.32403 (10)0.0225 (3)
H31.13480.42590.30670.034*
O40.42564 (14)0.36716 (10)0.14845 (15)0.0632 (6)
H4A0.3777 (12)0.3561 (14)0.152 (3)0.076*
H4B0.429 (3)0.3968 (8)0.165 (2)0.076*
N11.07419 (11)0.60588 (7)0.41452 (11)0.0167 (3)
N20.73624 (11)0.58287 (7)0.48464 (11)0.0200 (4)
N30.56019 (12)0.64241 (8)0.52271 (13)0.0275 (4)
H3A0.55580.67020.47780.033*
H3B0.50840.64640.55790.033*
C11.15439 (13)0.58404 (8)0.38258 (13)0.0184 (4)
H11.20910.60830.38200.022*
C21.16090 (13)0.52665 (8)0.34983 (13)0.0179 (4)
C31.08010 (13)0.48980 (8)0.35148 (13)0.0172 (4)
C40.99316 (13)0.51308 (8)0.38424 (13)0.0167 (4)
C50.91002 (14)0.47809 (8)0.38934 (13)0.0192 (4)
H50.91050.43860.37000.023*
C60.82924 (13)0.50185 (8)0.42245 (13)0.0193 (4)
C70.82172 (13)0.56183 (8)0.45095 (13)0.0180 (4)
C80.90503 (13)0.59551 (8)0.44819 (13)0.0176 (4)
H80.90430.63480.46840.021*
C90.99058 (13)0.57178 (8)0.41560 (13)0.0170 (4)
C101.07597 (14)0.66786 (8)0.44871 (14)0.0211 (4)
H10A1.14270.67940.46390.025*
H10B1.04060.67010.50500.025*
C111.03232 (16)0.71041 (9)0.37950 (16)0.0282 (5)
H11A1.06420.70650.32220.042*
H11B1.04030.75030.40230.042*
H11C0.96430.70190.36940.042*
C121.25206 (14)0.50349 (9)0.31606 (14)0.0213 (4)
C130.73860 (14)0.64186 (9)0.52505 (14)0.0228 (4)
H13A0.74050.67140.47630.027*
H13B0.79690.64630.56500.027*
C140.65017 (15)0.65186 (10)0.58046 (16)0.0270 (5)
H14A0.65160.62470.63270.032*
H14B0.65110.69210.60450.032*
C150.55900 (15)0.58264 (10)0.48029 (16)0.0284 (5)
H15A0.50120.57820.43970.034*
H15B0.55720.55260.52840.034*
C160.64805 (14)0.57405 (10)0.42577 (14)0.0254 (5)
H16A0.64800.53420.40010.031*
H16B0.64710.60210.37480.031*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Bi10.01352 (3)0.01870 (3)0.01912 (3)−0.00108 (2)0.00093 (2)−0.00093 (2)
Cl10.0228 (3)0.0167 (3)0.0330 (4)0.000−0.0039 (3)0.000
Cl20.0241 (2)0.0284 (2)0.0269 (2)−0.00434 (18)0.00425 (19)−0.00849 (19)
Cl30.0214 (2)0.0372 (2)0.0214 (2)0.00634 (19)−0.00045 (18)−0.0049 (2)
Cl40.0214 (2)0.0466 (3)0.0275 (3)0.0063 (2)−0.00225 (19)0.0042 (2)
Cl50.0332 (3)0.0226 (2)0.0480 (3)−0.0083 (2)0.0071 (2)−0.0018 (2)
Cl60.0209 (3)0.0200 (3)0.0671 (5)0.0000.0154 (3)0.000
F10.0198 (5)0.0281 (6)0.0351 (7)−0.0095 (5)0.0049 (5)−0.0042 (5)
O10.0213 (7)0.0252 (7)0.0324 (8)0.0038 (6)0.0036 (6)−0.0085 (6)
O20.0182 (7)0.0258 (7)0.0523 (10)−0.0008 (6)0.0126 (6)−0.0086 (7)
O30.0206 (6)0.0201 (6)0.0267 (7)0.0011 (5)0.0017 (6)−0.0056 (5)
O40.0324 (9)0.0866 (13)0.0726 (13)−0.0253 (9)0.0216 (9)−0.0498 (11)
N10.0134 (6)0.0167 (6)0.0199 (7)−0.0018 (5)0.0008 (6)−0.0012 (6)
N20.0109 (7)0.0268 (7)0.0223 (8)0.0003 (6)−0.0003 (6)−0.0025 (7)
N30.0158 (7)0.0310 (8)0.0360 (10)0.0057 (7)0.0045 (7)0.0098 (8)
C10.0142 (8)0.0213 (8)0.0196 (9)−0.0020 (6)0.0008 (7)0.0016 (7)
C20.0151 (8)0.0208 (8)0.0178 (8)0.0006 (7)0.0013 (7)−0.0004 (7)
C30.0183 (8)0.0163 (7)0.0167 (8)0.0006 (6)−0.0004 (7)0.0005 (7)
C40.0157 (8)0.0186 (8)0.0159 (8)−0.0006 (6)−0.0002 (6)−0.0002 (7)
C50.0194 (8)0.0209 (8)0.0171 (8)−0.0032 (7)−0.0002 (7)−0.0016 (7)
C60.0148 (8)0.0240 (8)0.0189 (9)−0.0045 (7)−0.0002 (7)−0.0007 (7)
C70.0159 (8)0.0211 (8)0.0168 (8)−0.0015 (7)−0.0016 (7)0.0003 (7)
C80.0165 (8)0.0183 (8)0.0180 (8)0.0006 (6)0.0001 (7)−0.0016 (7)
C90.0141 (8)0.0200 (8)0.0168 (8)−0.0002 (6)−0.0004 (6)0.0006 (7)
C100.0171 (8)0.0192 (8)0.0273 (10)−0.0027 (7)0.0027 (7)−0.0087 (7)
C110.0277 (10)0.0224 (9)0.0348 (12)0.0019 (8)0.0045 (9)0.0004 (9)
C120.0200 (9)0.0248 (9)0.0191 (9)0.0019 (7)0.0008 (7)0.0007 (7)
C130.0175 (8)0.0232 (9)0.0277 (10)0.0006 (7)0.0029 (7)−0.0024 (8)
C140.0199 (9)0.0276 (9)0.0338 (11)0.0043 (8)0.0048 (8)0.0006 (9)
C150.0157 (9)0.0325 (10)0.0367 (12)0.0009 (8)−0.0014 (8)0.0053 (9)
C160.0169 (9)0.0361 (10)0.0229 (10)−0.0016 (8)−0.0028 (7)0.0020 (8)

Geometric parameters (Å, °)

Bi1—Bi1i3.7851 (3)C1—H10.940
Bi1—Cl42.5471 (6)C2—C31.402 (3)
Bi1—Cl32.5497 (5)C2—C121.479 (3)
Bi1—Cl52.5781 (5)C3—C41.424 (3)
Bi1—Cl12.8599 (5)C4—C51.408 (3)
Bi1—Cl22.9194 (6)C4—C91.411 (3)
Bi1—Cl2i2.9984 (6)C5—C61.357 (3)
Cl1—Bi1i2.8599 (5)C5—H50.940
Cl2—Bi1i2.9984 (6)C6—C71.430 (3)
F1—C61.357 (2)C7—C81.391 (3)
O1—C121.226 (2)C8—C91.410 (3)
O2—C121.313 (2)C8—H80.940
O2—H20.830C10—C111.504 (3)
O3—C31.319 (2)C10—H10A0.980
O3—H30.830C10—H10B0.980
O4—H4A0.715 (18)C11—H11A0.970
O4—H4B0.717 (19)C11—H11B0.970
N1—C11.326 (2)C11—H11C0.970
N1—C91.398 (2)C13—C141.522 (3)
N1—C101.493 (2)C13—H13A0.980
N2—C71.393 (2)C13—H13B0.980
N2—C131.464 (3)C14—H14A0.980
N2—C161.477 (3)C14—H14B0.980
N3—C141.490 (3)C15—C161.517 (3)
N3—C151.492 (3)C15—H15A0.980
N3—H3A0.910C15—H15B0.980
N3—H3B0.910C16—H16A0.980
C1—C21.393 (3)C16—H16B0.980
Cl4—Bi1—Cl392.375 (18)F1—C6—C7117.90 (16)
Cl4—Bi1—Cl596.10 (2)C8—C7—N2123.26 (17)
Cl3—Bi1—Cl597.124 (19)C8—C7—C6116.27 (17)
Cl4—Bi1—Cl194.585 (16)N2—C7—C6120.35 (16)
Cl3—Bi1—Cl193.506 (14)C7—C8—C9121.19 (17)
Cl5—Bi1—Cl1164.578 (16)C7—C8—H8119.4
Cl4—Bi1—Cl288.285 (17)C9—C8—H8119.4
Cl3—Bi1—Cl2170.408 (16)N1—C9—C8120.56 (16)
Cl5—Bi1—Cl292.318 (17)N1—C9—C4119.04 (16)
Cl1—Bi1—Cl276.903 (12)C8—C9—C4120.39 (16)
Cl4—Bi1—Cl2i169.401 (17)N1—C10—C11112.43 (16)
Cl3—Bi1—Cl2i84.255 (16)N1—C10—H10A109.1
Cl5—Bi1—Cl2i94.291 (17)C11—C10—H10A109.1
Cl1—Bi1—Cl2i75.647 (12)N1—C10—H10B109.1
Cl2—Bi1—Cl2i93.385 (16)C11—C10—H10B109.1
Bi1—Cl1—Bi1i82.867 (18)H10A—C10—H10B107.9
Bi1—Cl2—Bi1i79.513 (14)C10—C11—H11A109.5
C12—O2—H2109.5C10—C11—H11B109.5
C3—O3—H3109.5H11A—C11—H11B109.5
H4A—O4—H4B110 (4)C10—C11—H11C109.5
C1—N1—C9120.76 (15)H11A—C11—H11C109.5
C1—N1—C10118.00 (15)H11B—C11—H11C109.5
C9—N1—C10121.24 (15)O1—C12—O2124.09 (19)
C7—N2—C13116.96 (15)O1—C12—C2121.17 (18)
C7—N2—C16116.57 (16)O2—C12—C2114.74 (17)
C13—N2—C16111.13 (16)N2—C13—C14110.36 (16)
C14—N3—C15110.96 (16)N2—C13—H13A109.6
C14—N3—H3A109.4C14—C13—H13A109.6
C15—N3—H3A109.4N2—C13—H13B109.6
C14—N3—H3B109.4C14—C13—H13B109.6
C15—N3—H3B109.4H13A—C13—H13B108.1
H3A—N3—H3B108.0N3—C14—C13110.88 (18)
N1—C1—C2122.72 (17)N3—C14—H14A109.5
N1—C1—H1118.6C13—C14—H14A109.5
C2—C1—H1118.6N3—C14—H14B109.5
C1—C2—C3119.14 (17)C13—C14—H14B109.5
C1—C2—C12121.21 (17)H14A—C14—H14B108.1
C3—C2—C12119.62 (16)N3—C15—C16110.00 (17)
O3—C3—C2123.19 (17)N3—C15—H15A109.7
O3—C3—C4118.21 (16)C16—C15—H15A109.7
C2—C3—C4118.61 (16)N3—C15—H15B109.7
C5—C4—C9118.83 (17)C16—C15—H15B109.7
C5—C4—C3121.43 (17)H15A—C15—H15B108.2
C9—C4—C3119.70 (16)N2—C16—C15110.71 (17)
C6—C5—C4119.41 (17)N2—C16—H16A109.5
C6—C5—H5120.3C15—C16—H16A109.5
C4—C5—H5120.3N2—C16—H16B109.5
C5—C6—F1118.21 (17)C15—C16—H16B109.5
C5—C6—C7123.80 (17)H16A—C16—H16B108.1

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O10.831.852.583 (2)146
O2—H2···Cl6ii0.832.193.0150 (15)173
O4—H4A···Cl50.715 (18)2.563 (18)3.270 (2)170 (4)
O4—H4B···Cl60.717 (19)2.47 (2)3.146 (2)157 (4)
N3—H3A···Cl2iii0.912.513.3961 (19)165
N3—H3B···O4iv0.911.822.693 (3)160

Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y+1/2, z; (iv) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2178).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Bruker (1998). SMART Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT (Version 6.45) and SADABS (Version 2.10). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography