PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m360.
Published online 2008 January 16. doi:  10.1107/S1600536807067839
PMCID: PMC2960245

Poly[[diaqua-μ4-tartrato-μ2-tartrato-dimanganese(II)] dihydrate]

Abstract

In the title compound, {[Mn(C4H4O6)(H2O)]·H2O}n, the Mn2+ ion is connected to three different tartrate anions and a water mol­ecule, resulting in a distorted MnO6 octa­hedral geometry. There are two tartrate half-anions in the asymmetric unit, both of which are completed by crystallographic twofold rotation symmetry. The tartrate dianions bridge the Mn2+ ions to form a wave-like infinite layer. A series of O—H(...)O hydrogen bonds link the layers into a three-dimensional network.

Related literature

For related literature, see: Kam et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m360-scheme1.jpg

Experimental

Crystal data

  • [Mn(C4H4O6)(H2O)]·H2O
  • M r = 239.04
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m360-efi2.jpg
  • a = 11.029 (3) Å
  • b = 7.3925 (18) Å
  • c = 10.165 (3) Å
  • β = 112.149 (3)°
  • V = 767.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.74 mm−1
  • T = 293 (2) K
  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.661, T max = 0.739
  • 3884 measured reflections
  • 1507 independent reflections
  • 1481 reflections with I > 2σ(I)
  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.074
  • S = 1.10
  • 1507 reflections
  • 118 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997b [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067839/hb2676sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067839/hb2676Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Natural Science Foundation of the Education Bureau of Liaoning Province (grant No. 05 L159).

supplementary crystallographic information

Comment

Researchers have been interested in the study of tartrate-based coordination polymers, which has resulted in the formation of many interesting structures (e.g. Kam et al., 2007). The title compound, (I), is centrosymmetric (Fig. 1). The Mn(II) ion adopts a distorted MnO6 octahedral geometry (Table 1).

In the crystal, one (R,R) and one (S,S) tartrate ligands coordinate with two metal ions to form a 'tetrameric' A ring (Fig. 2). Then, two (R,R), two (S,S) tartrate ligands and four metal ions form 'hexameric' B ring (Fig. 2). Overal, a layered, two-dimensional, coordination polymer arises. The layers encompass small channels occupied by the uncoordinated water molecules, which interact with the layers by way of O—H···O hydrogen bonds (Table 2).

Experimental

A mixture of aqueous Mn(NO3)2 (2 mmol), racemic tartaric acid (2 mmol) and NaOH (4 mmol) in 20 ml water was stirred for 2 h. The resulting solution was filtered and allowed to stand in air. Slow evaporation at room temperature for several weeks yielded yellow blocks of (I).

Refinement

The H atoms were located in a different map, relocated in idealized positions (C—H = 0.98 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.
View of (I), showing displacement ellipsoids drawn at 50% probability level (arbitrary spheres for the H atoms). Symmetry codes: (i) -x, y, 1/2 - z; (ii) 1 - x, y, 3/2 - z; (iii) x, -y, z - 1/2.
Fig. 2.
View of the layered network in (I) along [010] direction, with the A and B rings indicated (see text).

Crystal data

[Mn(C4H4O6)(H2O)]·H2OF000 = 484
Mr = 239.04Dx = 2.068 Mg m3
Monoclinic, P2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 456 reflections
a = 11.029 (3) Åθ = 2.8–22.3º
b = 7.3925 (18) ŵ = 1.74 mm1
c = 10.165 (3) ÅT = 293 (2) K
β = 112.149 (3)ºBlock, yellow
V = 767.6 (3) Å30.25 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer1507 independent reflections
Radiation source: fine-focus sealed tube1481 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.012
T = 293(2) Kθmax = 26.0º
ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −12→13
Tmin = 0.661, Tmax = 0.739k = −9→5
3884 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.074  w = 1/[σ2(Fo2) + (0.0399P)2 + 0.6888P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1507 reflectionsΔρmax = 0.45 e Å3
118 parametersΔρmin = −0.69 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.25422 (3)0.14754 (4)0.41123 (3)0.01934 (13)
C10.13897 (18)0.5035 (3)0.43625 (19)0.0179 (4)
C20.07525 (17)0.4815 (2)0.27492 (18)0.0162 (4)
H20.10240.58210.22940.019*
C30.42697 (17)−0.2562 (3)0.74009 (19)0.0181 (4)
H30.3829−0.35030.67060.022*
C40.35823 (17)−0.0765 (3)0.68319 (19)0.0200 (4)
O10.20895 (14)0.3801 (2)0.51027 (14)0.0251 (3)
O20.11465 (16)0.65022 (18)0.48441 (15)0.0242 (3)
O30.11895 (14)0.31700 (19)0.23691 (14)0.0212 (3)
H3A0.12450.32560.15900.032*
O40.41270 (13)−0.30125 (19)0.87015 (14)0.0206 (3)
H40.4041−0.41140.87030.031*
O50.28552 (14)−0.00821 (19)0.73884 (15)0.0241 (3)
O60.37862 (15)−0.0127 (2)0.57879 (16)0.0315 (4)
O1W0.08037 (15)−0.0100 (2)0.39729 (17)0.0306 (3)
H1WA0.0662−0.11560.37070.046*
H1WB0.0915−0.02980.48080.046*
O2W0.6263 (2)0.3474 (2)0.6453 (2)0.0511 (5)
H2WA0.65770.29090.72000.077*
H2WB0.57350.28190.58590.077*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.02154 (19)0.01935 (19)0.01749 (19)0.00330 (10)0.00775 (13)0.00311 (10)
C10.0182 (8)0.0198 (9)0.0160 (9)−0.0034 (7)0.0067 (7)−0.0012 (7)
C20.0180 (9)0.0170 (9)0.0139 (8)0.0015 (7)0.0064 (7)0.0005 (7)
C30.0175 (9)0.0200 (9)0.0165 (8)−0.0014 (7)0.0060 (7)0.0010 (7)
C40.0158 (8)0.0228 (10)0.0182 (9)−0.0014 (7)0.0028 (7)0.0040 (7)
O10.0303 (8)0.0254 (7)0.0158 (7)0.0064 (6)0.0045 (6)0.0005 (5)
O20.0358 (8)0.0200 (7)0.0177 (7)0.0007 (6)0.0110 (6)−0.0020 (5)
O30.0274 (7)0.0235 (7)0.0143 (6)0.0079 (6)0.0095 (5)0.0012 (5)
O40.0242 (7)0.0193 (7)0.0208 (7)0.0014 (5)0.0112 (5)0.0051 (5)
O50.0274 (7)0.0215 (7)0.0261 (7)0.0038 (6)0.0131 (6)0.0038 (5)
O60.0261 (7)0.0416 (9)0.0294 (8)0.0111 (6)0.0136 (6)0.0194 (7)
O1W0.0302 (8)0.0250 (8)0.0336 (8)−0.0013 (6)0.0086 (6)0.0057 (6)
O2W0.0643 (13)0.0254 (9)0.0473 (12)0.0007 (8)0.0024 (10)0.0043 (7)

Geometric parameters (Å, °)

Mn1—O62.1036 (15)C3—C41.530 (3)
Mn1—O12.1444 (15)C3—C3iii1.546 (3)
Mn1—O5i2.1695 (15)C3—H30.9800
Mn1—O1W2.2018 (16)C4—O51.249 (2)
Mn1—O32.2230 (14)C4—O61.257 (2)
Mn1—O4i2.2518 (14)O3—H3A0.8199
C1—O11.247 (2)O4—Mn1iv2.2518 (14)
C1—O21.260 (2)O4—H40.8198
C1—C21.530 (2)O5—Mn1iv2.1695 (15)
C2—O31.415 (2)O1W—H1WA0.8215
C2—C2ii1.542 (3)O1W—H1WB0.8237
C2—H20.9800O2W—H2WA0.8201
C3—O41.429 (2)O2W—H2WB0.8201
O6—Mn1—O1105.52 (6)C2ii—C2—H2109.1
O6—Mn1—O5i97.63 (6)O4—C3—C4109.91 (15)
O1—Mn1—O5i153.64 (6)O4—C3—C3iii110.62 (18)
O6—Mn1—O1W92.32 (6)C4—C3—C3iii113.12 (11)
O1—Mn1—O1W95.92 (6)O4—C3—H3107.7
O5i—Mn1—O1W95.55 (6)C4—C3—H3107.7
O6—Mn1—O3178.49 (5)C3iii—C3—H3107.7
O1—Mn1—O373.58 (5)O5—C4—O6125.50 (19)
O5i—Mn1—O383.51 (5)O5—C4—C3119.39 (16)
O1W—Mn1—O386.58 (6)O6—C4—C3115.08 (17)
O6—Mn1—O4i96.86 (6)C1—O1—Mn1120.25 (12)
O1—Mn1—O4i90.96 (6)C2—O3—Mn1117.52 (10)
O5i—Mn1—O4i73.67 (5)C2—O3—H3A110.8
O1W—Mn1—O4i166.64 (6)Mn1—O3—H3A122.8
O3—Mn1—O4i84.40 (5)C3—O4—Mn1iv114.70 (10)
O1—C1—O2124.68 (17)C3—O4—H4106.7
O1—C1—C2119.90 (16)Mn1iv—O4—H4113.7
O2—C1—C2115.41 (16)C4—O5—Mn1iv119.92 (12)
O3—C2—C1108.55 (14)C4—O6—Mn1128.71 (13)
O3—C2—C2ii110.22 (11)Mn1—O1W—H1WA125.2
C1—C2—C2ii110.78 (18)Mn1—O1W—H1WB103.9
O3—C2—H2109.1H1WA—O1W—H1WB96.1
C1—C2—H2109.1H2WA—O2W—H2WB108.4

Symmetry codes: (i) x, −y, z−1/2; (ii) −x, y, −z+1/2; (iii) −x+1, y, −z+3/2; (iv) x, −y, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4···O2Wv0.821.812.628 (2)175
O3—H3A···O2vi0.821.752.561 (2)173
O1W—H1WA···O2vii0.822.042.643 (2)130
O2W—H2WA···O5iii0.822.292.895 (2)131
O2W—H2WB···O4i0.822.252.919 (3)140

Symmetry codes: (v) −x+1, y−1, −z+3/2; (vi) x, −y+1, z−1/2; (vii) x, y−1, z; (iii) −x+1, y, −z+3/2; (i) x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2676).

References

  • Bruker (2001). SMART (Version 5.624), SAINT (Version 6.04) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kam, K. C., Young, K. L. M. & Cheetham, A. K. (2007). Cryst. Growth Des.7, 1522–1532.
  • Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1997b). SHELXTL University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography