PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m355.
Published online 2008 January 16. doi:  10.1107/S1600536808000810
PMCID: PMC2960242

Diaqua­bis(5-phenyl-1H-pyrazole-3-carboxyl­ato)copper(II)

Abstract

In the centrosymmetric title compound, [Cu(C10H7N2O2)2(H2O)2], the CuII ion occupies an inversion centre and exhibits a distorted octa­hedral geometry. The phenyl and pyrazole rings of the ligand are twisted by an angle of 11.36 (8)°. In the crystal structure, mol­ecules are linked into a two-dimensional network parallel to the (010) plane by O—H(...)O and N—H(...)O hydrogen bonds.

Related literature

For ligand preparation, see: Crane et al. (1999 [triangle]); Gharbaoui et al. (2007 [triangle]). For general background, see: van Herk et al. (2003 [triangle]); Knopp (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m355-scheme1.jpg

Experimental

Crystal data

  • [Cu(C10H7N2O2)2(H2O)2]
  • M r = 473.92
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m355-efi1.jpg
  • a = 5.0443 (6) Å
  • b = 32.161 (4) Å
  • c = 6.3234 (8) Å
  • β = 106.293 (1)°
  • V = 984.6 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.16 mm−1
  • T = 292 (2) K
  • 0.35 × 0.25 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.690, T max = 0.829
  • 8611 measured reflections
  • 2254 independent reflections
  • 1907 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.084
  • S = 1.08
  • 2254 reflections
  • 150 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000810/ci2551sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000810/ci2551Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Gui Zhou Province Education Commission (grant No. 2005118) for supporting this work.

supplementary crystallographic information

Comment

Nicotinic acid as a hypolipidemic agent appears to have good potential to increase HDL cholesterol levels to a greater extent (Knopp, 1999). However, it has severe skin flushing side effect. In the search for novel agonists for nicotinic acid receptor, substituted pyrazole-3-carboxylic acids were found have substantial affinity for cloned G protein-coupled nicotinic acid receptor (van Herk et al., 2003). We report here the crystal structure of the title CuII complex with 5-phenyl-1H-pyrazole-3-carboxylic acid.

The asymmetric unit contains one-half of a formula unit (Fig. 1). The CuII ion occupies an inversion centre and exhibits a distorted octahedral geometry. The phenyl (C5—C10) and pyrazole (N1/N2/C2/C3/C4) rings form a dihedral angle of 11.36 (8)°. The dihedral angle between the Cu1/O1/C1/C2/N1 and N1/N2/C2/C3/C4 planes is 3.8 (1)°.

The molecules are linked into a two-dimensional network parallel to the (0 1 0) plane by O—H···O and N—H···O hydrogen bonds (Table 2).

Experimental

5-Phenyl-1H-pyrazole-3-carboxylic acid was synthesized according to the reported procedure (Gharbaoui et al., 2007;Crane et al., 1999). 5-Phenyl-1H-pyrazole-3-carboxylic acid (1.0 g, 5.3 mmol) and Cu(OAc)2.2H2O (0.75 g, 2.7 mmol) were heated in H2O (200 ml) for 4 h with stirring. The resulting precipitate was filtered off to obtain the title compound (1.0 g, 80%). Single crystals suitable for X-ray diffraction were obtained by recrystallization from dimethylformamide-water (1:1 v/v) solution.

Refinement

The water H atoms were located and isotropically refined, with the O—H and H···H distances restrained to 0.84 (1) and 1.37 (2) Å, respectively. The remaining H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. Atoms labelled with the suffix A are generated by the symmetry operation (-x + 1, -y, -z).

Crystal data

[Cu(C10H7N2O2)2(H2O)2]F000 = 486
Mr = 473.92Dx = 1.599 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2772 reflections
a = 5.0443 (6) Åθ = 2.5–26.6º
b = 32.161 (4) ŵ = 1.16 mm1
c = 6.3234 (8) ÅT = 292 (2) K
β = 106.293 (1)ºBlock, blue
V = 984.6 (2) Å30.35 × 0.25 × 0.17 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer2254 independent reflections
Radiation source: fine-focus sealed tube1907 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.027
T = 292(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −6→6
Tmin = 0.690, Tmax = 0.829k = −41→39
8611 measured reflectionsl = −8→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084  w = 1/[σ2(Fo2) + (0.0302P)2 + 0.72P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2254 reflectionsΔρmax = 0.34 e Å3
150 parametersΔρmin = −0.32 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.00000.00000.03166 (13)
O10.3462 (3)0.01796 (5)0.2440 (2)0.0325 (3)
O20.3301 (4)0.07235 (5)0.4604 (3)0.0404 (4)
O30.0850 (4)0.03336 (6)−0.2706 (3)0.0380 (4)
N10.6670 (4)0.05536 (5)0.0513 (3)0.0294 (4)
N20.8212 (4)0.08034 (5)−0.0348 (3)0.0301 (4)
H20.89560.0730−0.13590.036*
C10.4084 (4)0.05525 (7)0.3144 (3)0.0288 (5)
C20.5895 (4)0.07783 (7)0.2015 (3)0.0277 (4)
C30.6964 (4)0.11779 (7)0.2111 (4)0.0302 (5)
H30.67320.13950.30170.036*
C40.8454 (4)0.11852 (6)0.0569 (4)0.0282 (4)
C51.0091 (5)0.15138 (7)−0.0085 (4)0.0328 (5)
C61.0740 (6)0.18727 (8)0.1155 (5)0.0473 (6)
H61.00670.19110.23680.057*
C71.2389 (7)0.21770 (9)0.0605 (6)0.0641 (9)
H71.28210.24170.14540.077*
C81.3376 (6)0.21240 (9)−0.1183 (6)0.0642 (9)
H81.44820.2328−0.15430.077*
C91.2744 (6)0.17720 (10)−0.2448 (5)0.0565 (8)
H91.34190.1738−0.36630.068*
C101.1097 (5)0.14664 (8)−0.1918 (4)0.0438 (6)
H101.06620.1229−0.27860.053*
H1W0.138 (6)0.0417 (9)−0.376 (4)0.069 (10)*
H2W−0.041 (5)0.0163 (8)−0.312 (5)0.075 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0386 (2)0.0297 (2)0.0341 (2)−0.00911 (17)0.02227 (17)−0.00583 (17)
O10.0365 (9)0.0338 (8)0.0339 (8)−0.0071 (7)0.0207 (7)−0.0019 (7)
O20.0523 (11)0.0407 (9)0.0388 (9)−0.0031 (8)0.0301 (8)−0.0036 (7)
O30.0416 (10)0.0443 (10)0.0361 (9)−0.0093 (8)0.0239 (8)−0.0051 (8)
N10.0332 (10)0.0304 (10)0.0301 (9)−0.0060 (7)0.0177 (8)−0.0028 (7)
N20.0334 (10)0.0325 (10)0.0311 (10)−0.0064 (8)0.0203 (8)−0.0029 (8)
C10.0276 (11)0.0349 (12)0.0264 (11)0.0006 (9)0.0115 (9)0.0032 (9)
C20.0286 (11)0.0311 (11)0.0260 (10)0.0004 (8)0.0119 (9)−0.0003 (8)
C30.0315 (11)0.0298 (11)0.0320 (12)0.0002 (9)0.0133 (9)−0.0033 (9)
C40.0282 (10)0.0277 (11)0.0296 (11)0.0005 (8)0.0094 (9)0.0016 (9)
C50.0285 (11)0.0303 (11)0.0402 (12)0.0008 (9)0.0108 (9)0.0071 (10)
C60.0478 (15)0.0366 (14)0.0641 (18)−0.0063 (11)0.0264 (13)−0.0051 (12)
C70.0610 (19)0.0357 (15)0.104 (3)−0.0135 (13)0.0363 (19)−0.0046 (15)
C80.0521 (18)0.0476 (17)0.101 (3)−0.0060 (14)0.0345 (18)0.0248 (17)
C90.0530 (17)0.0655 (19)0.0588 (18)−0.0018 (14)0.0287 (14)0.0232 (15)
C100.0481 (15)0.0462 (15)0.0411 (14)−0.0060 (11)0.0189 (12)0.0055 (11)

Geometric parameters (Å, °)

Cu1—N11.9572 (17)C3—C41.388 (3)
Cu1—N1i1.9573 (17)C3—H30.93
Cu1—O1i1.9968 (14)C4—C51.470 (3)
Cu1—O11.9968 (14)C5—C61.382 (3)
Cu1—O32.5400 (19)C5—C101.398 (3)
O1—C11.287 (3)C6—C71.390 (4)
O2—C11.231 (3)C6—H60.93
O3—H1W0.827 (10)C7—C81.368 (5)
O3—H2W0.825 (10)C7—H70.93
N1—C21.336 (3)C8—C91.371 (5)
N1—N21.336 (2)C8—H80.93
N2—C41.349 (3)C9—C101.387 (3)
N2—H20.86C9—H90.93
C1—C21.496 (3)C10—H100.93
C2—C31.388 (3)
N1—Cu1—N1i180C3—C2—C1135.23 (19)
N1—Cu1—O1i98.56 (6)C4—C3—C2105.36 (19)
N1i—Cu1—O1i81.44 (6)C4—C3—H3127.3
N1—Cu1—O181.44 (6)C2—C3—H3127.3
N1i—Cu1—O198.56 (6)N2—C4—C3106.56 (18)
O1i—Cu1—O1180N2—C4—C5121.60 (19)
N1—Cu1—O387.85 (7)C3—C4—C5131.8 (2)
N1i—Cu1—O392.15 (7)C6—C5—C10118.6 (2)
O1i—Cu1—O391.56 (6)C6—C5—C4120.2 (2)
O1—Cu1—O388.44 (6)C10—C5—C4121.2 (2)
C1—O1—Cu1115.29 (13)C5—C6—C7120.6 (3)
Cu1—O3—H1W107 (2)C5—C6—H6119.7
Cu1—O3—H2W110 (2)C7—C6—H6119.7
H1W—O3—H2W111 (2)C8—C7—C6120.1 (3)
C2—N1—N2106.51 (17)C8—C7—H7120.0
C2—N1—Cu1114.33 (14)C6—C7—H7120.0
N2—N1—Cu1138.77 (14)C7—C8—C9120.4 (3)
N1—N2—C4111.41 (17)C7—C8—H8119.8
N1—N2—H2124.3C9—C8—H8119.8
C4—N2—H2124.3C8—C9—C10120.1 (3)
O2—C1—O1125.27 (19)C8—C9—H9120.0
O2—C1—C2120.58 (19)C10—C9—H9120.0
O1—C1—C2114.14 (18)C9—C10—C5120.3 (3)
N1—C2—C3110.16 (18)C9—C10—H10119.9
N1—C2—C1114.60 (18)C5—C10—H10119.9
N1—Cu1—O1—C12.75 (15)O1—C1—C2—C3176.1 (2)
N1i—Cu1—O1—C1−177.25 (15)N1—C2—C3—C40.0 (2)
O3—Cu1—O1—C1−85.31 (15)C1—C2—C3—C4−178.6 (2)
O1i—Cu1—N1—C2175.94 (15)N1—N2—C4—C3−0.1 (2)
O1—Cu1—N1—C2−4.06 (15)N1—N2—C4—C5179.06 (19)
O3—Cu1—N1—C284.69 (16)C2—C3—C4—N20.1 (2)
O1i—Cu1—N1—N24.4 (2)C2—C3—C4—C5−179.0 (2)
O1—Cu1—N1—N2−175.6 (2)N2—C4—C5—C6−167.6 (2)
O3—Cu1—N1—N2−86.8 (2)C3—C4—C5—C611.3 (4)
C2—N1—N2—C40.1 (2)N2—C4—C5—C1010.3 (3)
Cu1—N1—N2—C4172.02 (17)C3—C4—C5—C10−170.8 (2)
Cu1—O1—C1—O2178.61 (18)C10—C5—C6—C7−0.8 (4)
Cu1—O1—C1—C2−1.0 (2)C4—C5—C6—C7177.2 (3)
N2—N1—C2—C30.0 (2)C5—C6—C7—C80.3 (5)
Cu1—N1—C2—C3−174.22 (15)C6—C7—C8—C90.2 (5)
N2—N1—C2—C1178.84 (17)C7—C8—C9—C10−0.1 (5)
Cu1—N1—C2—C14.7 (2)C8—C9—C10—C5−0.5 (4)
O2—C1—C2—N1178.0 (2)C6—C5—C10—C90.9 (4)
O1—C1—C2—N1−2.4 (3)C4—C5—C10—C9−177.1 (2)
O2—C1—C2—C3−3.5 (4)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H1W···O2ii0.83 (3)1.88 (3)2.679 (3)161 (3)
N2—H2···O3iii0.861.932.719 (3)152
O3—H2W···O1iv0.83 (3)2.04 (3)2.773 (3)149 (3)

Symmetry codes: (ii) x, y, z−1; (iii) x+1, y, z; (iv) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2551).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Crane, J. D., Fox, O. D. & Sinn, E. (1999). J. Chem. Soc. Dalton Trans. pp. 1461–1465.
  • Gharbaoui, T., Skinner, P. J., Shin, Y.-J. & Averbuj, C. (2007). Bioorg. Med. Chem. Lett.17, 4914–4919. [PubMed]
  • Herk, T. V. van, Brussee, J., van den Nieuwendijk, A. M. C. H. & van Klein, P. A. M. (2003). J. Med. Chem.46, 3945–3951. [PubMed]
  • Knopp, R. H. (1999). N. Engl. J. Med.341, 498–511. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography